Neural network-based parking system object detection and predictive modeling

Date
2023-03
Authors
El Khatib, Ziad
Ben Mnaouer, Adel
Moussa, Sherif
Mashaal, Omar
Ismail, Nor Azman
Abas, Mohd Azman Bin
Abdulgaleel, Fuad
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Advanced Engineering and Science
Abstract
A neural network-based parking system with real-time license plate detection and vacant space detection using hyper parameter optimization is presented. When number of epochs increased from 30, 50 to 80 and learning rate tuned to 0.001, the validation loss improved to 0.017 and training object loss improved to 0.040. The model means average precision mAP_0.5 is improved to 0.988 and the precision is improved to 99%. The proposed neural network-based parking system also uses a regularization technique for effective predictive modeling. The proposed modified lasso ridge elastic (LRE) regularization technique provides a 5.21 root mean square error (RMSE) and an R-square of 0.71 with a 4.22 mean absolute error (MAE) indicative of higher accuracy performance compared to other regularization regression models. The advantage of the proposed modified LRE is that it enables effective regularization via modified penalty with the feature selection characteristics of both lasso and ridge. © 2023, Institute of Advanced Engineering and Science. All rights reserved.
Description
This work is licensed under Creative Commons License and full text is openly accessible in CUD Digital Repository. The version of the scholarly record of this article is published in IAES International Journal of Artificial Intelligence (2023), available online at: http://doi.org/10.11591/ijai.v12.i1.pp66-78
Keywords
Hyperparamter optimization, Predictive modeling, Real-time object detection, Regularization technique, Yolo neural network
Citation
El Khatib, Z., Ben Mnaouer, A., Moussa, S., Mashaal, O., Ismail, N. A., Abas, M. A. B., & Abdulgaleel, F. (2023). Neural network-based parking system object detection and predictive modeling. IAES International Journal of Artificial Intelligence, 12(1), 66-78. doi:10.11591/ijai.v12.i1.pp66-78
DOI