A real-time gradient aware multi-variable handheld urban scale air quality mapping IoT system

Journal Title
Journal ISSN
Volume Title
Institute of Electrical and Electronics Engineers Inc.
In outdoor urban scale air quality mapping, electrochemical sensors warm-up time, cross-sensitivity, geo-location typography, and energy efficiency are major challenges. These challenges lead to real-time gradient anomalies that effect the accuracy and prolonged lags in air quality mapping campaigns for state and environmental/meteorological agencies. In this work, a gradient aware, multi-variable air quality sensing node is proposed with event-triggered sensing based on position, gas magnitudes, and cross-sensitivity interpolation. In this approach, temperature, humidity, pressure, geo-position, photovoltaic power, volatile organic compounds, particulate matter, ozone, Carbon mono-oxide, Nitrogen dioxide, and Sulphur dioxide are the principle variables. Results have shown that the proposed system optimized the real-time air quality mapping for the chosen geo-spatial cluster, i.e. Qatar University. © 2020 IEEE.
This conference paper is not available at CUD collection. The version of scholarly record of this conference paper is published in 2020 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS) (2020), available online at: https://doi.org/10.1109/DTS48731.2020.9196131
Air quality, Environmental mapping, Gas sensors, Heterogeneous, IoT, Multi-variable, Air quality, Energy efficiency, Internet of things, Mapping, Nanosensors, Nanosystems, Nitrogen oxides, Photovoltaic cells, Sulfur dioxide, Volatile organic compounds, Cross sensitivity, Event-triggered, Nitrogen dioxides, Particulate Matter, Photovoltaic power, Principle variables, Qatar university, Quality sensing, Multivariable systems
Tariq, H., Abdaoui, A., Touati, F., Al-Hitmi, M. A. E., Crescini, D. & Manouer, A.B. A Real-time Gradient Aware Multi-Variable Handheld Urban Scale Air Quality Mapping IoT System. 2020 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS), Hammamet, Tunisia, 2020, pp. 1-5, https://doi.org/10.1109/DTS48731.2020.9196131