Resource efficient allocation and RRH placement for backhaul of moving small cells

Iftikhar, Zaeema
Jangsher, Sobia
Qureshi, Hassaan Khaliq
Aloqaily, Moayad
Journal Title
Journal ISSN
Volume Title
Institute of Electrical and Electronics Engineers Inc.
Mobile users suffer from deteriorating signal quality due to vehicle penetration losses. To solve this, small cells are deployed within the vehicles to improve the Quality of Service (QoS). These small cells called moving small cell access points (MSAPs), however, suffer from backhaul issues since they would have to send a huge amount of data to the core network. To solve the backhaul problem, cloud radio access network (CRAN) along with the millimeter wave (mmwave) can be a viable solution for moving vehicles. However, in order to realize its potential benefits, an effective remote radio head (RRH) deployment strategy and the resource-efficient allocation are needed. In this paper, we investigate the placement of RRH alongside a railway track; then, for the placed RRH, a joint time slot and power allocation problem are formulated with an objective of maximizing the resource efficiency (RE) of the MSAP backhaul network. An optimal Branch and Bound Algorithm (BnBA) is proposed for the constituted non-linear integer problem, and the effects of changing various model parameters are investigated. The simulation results show that our proposed algorithm deviates 52% of the sub-optimal result. © 2013 IEEE.
This article is not available at CUD collection. The version of scholarly record of this article is published in IEEE Access (2019), available online at:
Backhaul, CRAN, Energy efficiency, Fronthaul, Mmwave, Moving small cells, Resource efficiency, RRH, Spectral efficiency, Branch and bound method, Cells, Cytology, Millimeter waves, Problem solving, Quality of service, Radio access networks, Vehicles, Resource efficiencies, Small cells, Spectral efficiencies, Energy efficiency
Iftikhar, Z., Jangsher, S., Qureshi, H. K., & Aloqaily, M. (2019). Resource efficient allocation and RRH placement for backhaul of moving small cells. IEEE Access, 7, 47379–47389.