A clustering approach for autistic trait classification

Date
2020-07-02
Authors
Baadel, Said
Thabtah, Fadi
Lu, Joan
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor and Francis Ltd
Abstract
Machine learning (ML) techniques can be utilized by physicians, clinicians, as well as other users, to discover Autism Spectrum Disorder (ASD) symptoms based on historical cases and controls to enhance autism screening efficiency and accuracy. The aim of this study is to improve the performance of detecting ASD traits by reducing data dimensionality and eliminating redundancy in the autism dataset. To achieve this, a new semi-supervised ML framework approach called Clustering-based Autistic Trait Classification (CATC) is proposed that uses a clustering technique and that validates classifiers using classification techniques. The proposed method identifies potential autism cases based on their similarity traits as opposed to a scoring function used by many ASD screening tools. Empirical results on different datasets involving children, adolescents, and adults were verified and compared to other common machine learning classification techniques. The results showed that CATC offers classifiers with higher predictive accuracy, sensitivity, and specificity rates than those of other intelligent classification approaches such as Artificial Neural Network (ANN), Random Forest, Random Trees, and Rule Induction. These classifiers are useful as they are exploited by diagnosticians and other stakeholders involved in ASD screening. © 2020 Taylor & Francis Group, LLC.
Description
This article is not available at CUD collection. The version of scholarly record of this article paper is published in Informatics for Health and Social Care (2020), available online at: https://doi.org/10.1080/17538157.2019.1687482
Keywords
Autism, Autistic Disorder, Toddlers, Autism diagnosis, classification, clustering, machine learning, OMCOKE, predictive models
Citation
Baadel, S., Thabtah, F., & Lu, J. (2020). A clustering approach for autistic trait classification. Informatics for Health and Social Care, 45(3), 309-326, https://doi.org/10.1080/17538157.2019.1687482