Permanent URI for this collection


Recent Submissions

Now showing 1 - 5 of 19
  • Item
    Designing an MI-PCA based Agile Intrusion Detection System
    (Institute of Electrical and Electronics Engineers Inc., 2022) Kaushik, Sunil; Bhadrdwaj, Akashdeep; Rehman, Ateeq Ur; Bharany, Salil; Harguem, Saida; Kukunuru, Saigeeta; Thawabeh, Ossma Ali
  • Item
    Influencing Factors of E-Learning Towards E-Learner's Satisfaction
    (Institute of Electrical and Electronics Engineers Inc., 2022) Harguem, Saida; Marwaha, Sunita; Noaman, Samar; Ali, Naeem; Ali, Nasir; Kanwal, Khadija
  • Item
    Machine Learning Based Prediction of Stock Exchange on NASDAQ 100: A Twitter Mining Approach
    (Institute of Electrical and Electronics Engineers Inc., 2022) Harguem, Saida; Chabani, Zakariya; Noaman, Samar; Amjad, Muhammad; Alvi, Muhammad Bux; Asif, Muhammad; Mehmood, Muhammad Hassaan; Al-Kassem, Amer Hani
  • Item
    Towards proactive crowd management based on predictive analytics framework
    (Institute of Advanced Scientific Research, Inc., 2019) Jaffar, D. Ahmad; Sergio, P. Rommel; Sharaf, M. Soheil; Abdullah, B. Munir
  • Item
    OMCOKE: A Machine Learning Outlier-based Overlapping Clustering Technique for Multi-Label Data Analysis
    (Slovene Society Informatika, 2022-11) Baadel, Said; Thabtah, Fadi; Lu, Joan; Harguem, Saida
    Clustering is one of the challenging machine learning techniques due to its unsupervised learning nature. While many clustering algorithms constrain objects to single clusters, K-means overlapping partitioning clustering methods assign objects to multiple clusters by relaxing the constraints and allowing objects to belong to more than one cluster to better fit hidden structures in the data. However, when datasets contain outliers, they can significantly influence the mean distance of the data objects to their respective clusters, which is a drawback. Therefore, most researchers address this problem by simply removing the outliers. This can be problematic especially in applications such as fraud detection or cybersecurity attacks risk analysis. In this study, an alternative solution to this problem is proposed that captures outliers and stores them on-the-fly within a new cluster, instead of discarding. The new algorithm is named Outlier-based Multi-Cluster Overlapping K-Means Extension (OMCOKE). Empirical results on real-life multi-label datasets were derived to compare OMCOKE’s performance with other common overlapping clustering techniques. The results show that OMCOKE produced a better precision rate compared to the considered clustering algorithms. This method can benefit various stakeholders as these outliers could have real-life applications in cybersecurity, fraud detection, and the anti-phishing of websites. © 2022 Slovene Society Informatika. All rights reserved.