Browsing by Author "Khan, Muhammad Farhan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemDetection of Benign and Malignant Tumors in Skin Empowered with Transfer Learning(Hindawi Limited, 2022) Ghazal, Taher M.; Hussain, Sajid; Khan, Muhammad Farhan; Khan, Muhammad Adnan; Said, Raed A. T.; Ahmad, MunirSkin cancer is a major type of cancer with rapidly increasing victims all over the world. It is very much important to detect skin cancer in the early stages. Computer-developed diagnosis systems helped the physicians to diagnose disease, which allows appropriate treatment and increases the survival ratio of patients. In the proposed system, the classification problem of skin disease is tackled. An automated and reliable system for the classification of malignant and benign tumors is developed. In this system, a customized pretrained Deep Convolutional Neural Network (DCNN) is implemented. The pretrained AlexNet model is customized by replacing the last layers according to the proposed system problem. The softmax layer is modified according to binary classification detection. The proposed system model is well trained on malignant and benign tumors skin cancer dataset of 1920 images, where each class contains 960 images. After good training, the proposed system model is validated on 480 images, where the size of images of each class is 240. The proposed system model is analyzed using the following parameters: accuracy, sensitivity, specificity, Positive Predicted Values (PPV), Negative Predicted Value (NPV), False Positive Ratio (FPR), False Negative Ratio (FNR), Likelihood Ratio Positive (LRP), and Likelihood Ratio Negative (LRN). The accuracy achieved through the proposed system model is 87.1%, which is higher than traditional methods of classification. © 2022 Taher M.
- ItemMachine Learning Models for the Classification of Skin Cancer(Institute of Electrical and Electronics Engineers Inc., 2022) Arooj, Sahar; Khan, Muhammad Farhan; Khan, Muhammad Adnan; Khan, Muhammad Saleem; Taleb, NasserSkin cancer is a serious illness that requires early identification in order to improve survival rates. Deep learning algorithms for computerized skin cancer detection have now become popular in recent years. These models may increase their performance by having access to additional data, and their prime objective is image categorization. This activity is extremely useful in the realm of health since it may help physicians and experts make the best decisions and accurately assess a patient's condition. Early detection of skin cancer helps patients to receive appropriate treatment and so enhance their survival rate. This proposed methodology is generated to detect and classify skin cancers. In this study, we employed four pre-trained deep learning models (Squeeze net, Alex net, Res net 101, VGG 19) for the classification of four types of skin cancers in more than 6000 skin images including actinic keratoses, intraepithelial carcinoma Bowen's disease (akiec), basal cell carcinoma (bcc), benign keratosis-like lesions (bkl) and melanocytic nevi (nv). The objective was the identification of the best model in the classification of these breast cancer images with highest accuracy. Experimental results reveal that the Squeeze net model achieved an accuracy of 92.5% which is highest when compared with all other models while Alex net, Res net 101, VGG 19 acquired 91.1%, 83.2%, and 90.4% respectively. © 2022 IEEE.
- ItemPrediction of diabetes empowered with fused machine learning(Institute of Electrical and Electronics Engineers Inc., 2022) Ahmed, Usama; Issa, Ghassan F.; Khan, Muhammad Adnan; Aftab, Shabib; Khan, Muhammad Farhan; Said, Raed A. T.; Ghazal, Taher M.; Ahmad, MunirIn the medical field, it is essential to predict diseases early to prevent them. Diabetes is one of the most dangerous diseases all over the world. In modern lifestyles, sugar and fat are typically present in our dietary habits, which have increased the risk of diabetes. To predict the disease, it is extremely important to understand its symptoms. Currently, machine-learning (ML) algorithms are valuable for disease detection. This article presents a model using a fused machine learning approach for diabetes prediction. The conceptual framework consists of two types of models: Support Vector Machine (SVM) and Artificial Neural Network (ANN) models. These models analyze the dataset to determine whether a diabetes diagnosis is positive or negative. The dataset used in this research is divided into training data and testing data with a ratio of 70:30 respectively. The output of these models becomes the input membership function for the fuzzy model, whereas the fuzzy logic finally determines whether a diabetes diagnosis is positive or negative. A cloud storage system stores the fused models for future use. Based on the patient’s real-time medical record, the fused model predicts whether the patient is diabetic or not. The proposed fused ML model has a prediction accuracy of 94.87, which is higher than the previously published methods. Author