Browsing by Author "Issa, Ghassan F."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemClassification of Skin Cancer empowered with convolutional neural network(Institute of Electrical and Electronics Engineers Inc., 2022) Atta, Ayesha; Khan, Muhammad Adnan; Asif, Muhammad; Issa, Ghassan F.; Said, Raed A.; Faiz, Tauqeer
- ItemAn iomt-enabled smart healthcare model to monitor elderly people using machine learning technique(Hindawi Limited, 2021) Khan, Muhammad Farrukh; Ghazal, Taher M.; Said, Raed A.; Fatima, Areej; Abbas, Sagheer; Khan, M.A.; Issa, Ghassan F.; Ahmad, Munir; Khan, Muhammad AdnanThe Internet of Medical Things (IoMT) enables digital devices to gather, infer, and broadcast health data via the cloud platform. The phenomenal growth of the IoMT is fueled by many factors, including the widespread and growing availability of wearables and the ever-decreasing cost of sensor-based technology. The cost of related healthcare will rise as the global population of elderly people grows in parallel with an overall life expectancy that demands affordable healthcare services, solutions, and developments. IoMT may bring revolution in the medical sciences in terms of the quality of healthcare of elderly people while entangled with machine learning (ML) algorithms. The effectiveness of the smart healthcare (SHC) model to monitor elderly people was observed by performing tests on IoMT datasets. For evaluation, the precision, recall, fscore, accuracy, and ROC values are computed. The authors also compare the results of the SHC model with different conventional popular ML techniques, e.g., support vector machine (SVM), K-nearest neighbor (KNN), and decision tree (DT), to analyze the effectiveness of the result. © 2021 Muhammad Farrukh Khan et al.
- ItemPrediction of diabetes empowered with fused machine learning(Institute of Electrical and Electronics Engineers Inc., 2022) Ahmed, Usama; Issa, Ghassan F.; Khan, Muhammad Adnan; Aftab, Shabib; Khan, Muhammad Farhan; Said, Raed A. T.; Ghazal, Taher M.; Ahmad, MunirIn the medical field, it is essential to predict diseases early to prevent them. Diabetes is one of the most dangerous diseases all over the world. In modern lifestyles, sugar and fat are typically present in our dietary habits, which have increased the risk of diabetes. To predict the disease, it is extremely important to understand its symptoms. Currently, machine-learning (ML) algorithms are valuable for disease detection. This article presents a model using a fused machine learning approach for diabetes prediction. The conceptual framework consists of two types of models: Support Vector Machine (SVM) and Artificial Neural Network (ANN) models. These models analyze the dataset to determine whether a diabetes diagnosis is positive or negative. The dataset used in this research is divided into training data and testing data with a ratio of 70:30 respectively. The output of these models becomes the input membership function for the fuzzy model, whereas the fuzzy logic finally determines whether a diabetes diagnosis is positive or negative. A cloud storage system stores the fused models for future use. Based on the patient’s real-time medical record, the fused model predicts whether the patient is diabetic or not. The proposed fused ML model has a prediction accuracy of 94.87, which is higher than the previously published methods. Author