Browsing by Author "Aftab, Shabib"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemEnergy demand forecasting using fused machine learning approaches(Tech Science Press, 2022) Ghazal, Taher M.; Noreen, Sajida; Said, Raed A.; Khan, Muhammad Adnan; Siddiqui, Shahan Yamin; Abbas, Sagheer; Aftab, Shabib; Ahmad, MunirThe usage of IoT-based smart meter in electric power consumption shows a significant role in helping the users to manage and control their electric power consumption. It produces smooth communication to build equitable electric power distribution for users and improved management of the entire electric system for providers. Machine learning predicting algorithms have been worked to apply the electric efficiency and response of progressive energy creation, trans-mission, and consumption. In the proposed model, an IoT-based smart meter uses a support vector machine and deep extreme machine learning techniques for professional energy management. A deep extreme machine learning approach applied to feature-based data provided a better result. Lastly, decision-based fusion applied to both datasets to predict power consumption through smart meters and get better results than previous techniques. The established model smart meter with automatic load control increases the effectiveness of energy management. The proposed EDF-FMLA model achieved 90.70 accuracy for predicting energy consumption with a smart meter which is better than the existing approaches. © 2022, Tech Science Press. All rights reserved.
- ItemPrediction of diabetes empowered with fused machine learning(Institute of Electrical and Electronics Engineers Inc., 2022) Ahmed, Usama; Issa, Ghassan F.; Khan, Muhammad Adnan; Aftab, Shabib; Khan, Muhammad Farhan; Said, Raed A. T.; Ghazal, Taher M.; Ahmad, MunirIn the medical field, it is essential to predict diseases early to prevent them. Diabetes is one of the most dangerous diseases all over the world. In modern lifestyles, sugar and fat are typically present in our dietary habits, which have increased the risk of diabetes. To predict the disease, it is extremely important to understand its symptoms. Currently, machine-learning (ML) algorithms are valuable for disease detection. This article presents a model using a fused machine learning approach for diabetes prediction. The conceptual framework consists of two types of models: Support Vector Machine (SVM) and Artificial Neural Network (ANN) models. These models analyze the dataset to determine whether a diabetes diagnosis is positive or negative. The dataset used in this research is divided into training data and testing data with a ratio of 70:30 respectively. The output of these models becomes the input membership function for the fuzzy model, whereas the fuzzy logic finally determines whether a diabetes diagnosis is positive or negative. A cloud storage system stores the fused models for future use. Based on the patient’s real-time medical record, the fused model predicts whether the patient is diabetic or not. The proposed fused ML model has a prediction accuracy of 94.87, which is higher than the previously published methods. Author
- ItemSoftware defect prediction using ensemble learning: A systematic literature review(Institute of Electrical and Electronics Engineers Inc., 2021) Matloob, Faseeha; Ghazal, Taher M.; Taleb, Nasser; Aftab, Shabib; Ahmad, Munir; Khan, Muhammad AdnanRecent advances in the domain of software defect prediction (SDP) include the integration of multiple classification techniques to create an ensemble or hybrid approach. This technique was introduced to improve the prediction performance by overcoming the limitations of any single classification technique. This research provides a systematic literature review on the use of the ensemble learning approach for software defect prediction. The review is conducted after critically analyzing research papers published since 2012 in four well-known online libraries: ACM, IEEE, Springer Link, and Science Direct. In this study, five research questions covering the different aspects of research progress on the use of ensemble learning for software defect prediction are addressed. To extract the answers to identified questions, 46 most relevant papers are shortlisted after a thorough systematic research process. This study will provide compact information regarding the latest trends and advances in ensemble learning for software defect prediction and provide a baseline for future innovations and further reviews. Through our study, we discovered that frequently employed ensemble methods by researchers are the random forest, boosting, and bagging. Less frequently employed methods include stacking, voting and Extra Trees. Researchers proposed many promising frameworks, such as EMKCA, SMOTE-Ensemble, MKEL, SDAEsTSE, TLEL, and LRCR, using ensemble learning methods. The AUC, accuracy, F-measure, Recall, Precision, and MCC were mostly utilized to measure the prediction performance of models. WEKA was widely adopted as a platform for machine learning. Many researchers showed through empirical analysis that features selection, and data sampling was necessary pre-processing steps that improve the performance of ensemble classifiers. © 2013 IEEE.