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Abstract: This work employs machine learning methods to develop and test a technique for dynamic
stability analysis of the mathematical model of a power system. A distinctive feature of the proposed
method is the absence of a priori parameters of the power system model. Thus, the adaptability of the
dynamic stability assessment is achieved. The selected research topic relates to the issue of changing
the structure and parameters of modern power systems. The key features of modern power systems
include the following: decreased total inertia caused by integration of renewable sources energy,
stricter requirements for emergency control accuracy, highly digitized operation and control of power
systems, and high volumes of data that describe power system operation. Arranging emergency
control in these new conditions is one of the prominent problems in modern power systems. In this
study, the emergency control algorithms based on ensemble machine learning algorithms (XGBoost
and Random Forest) were developed for a low-inertia power system. Transient stability of a power
system was analyzed as the base function. Features of transmission line maintenance were used to
increase accuracy of estimation. Algorithms were tested using the test power system IEEE39. In the
case of the test sample, accuracy of instability classification for XGBoost was 91.5%, while that for
Random Forest was 81.6%. The accuracy of algorithms increased by 10.9% and 1.5%, respectively,
when the topology of the power system was taken into account.

Keywords: ensemble machine learning; extreme gradient boosting; power system modeling; random
forest; transient stability

MSC: 68T01

1. Introduction

Application of algorithms based on machine learning (ML) in planning, operation,
and control of power systems has become possible due to industry digitization and the
collection of sufficient amounts of data. The following problems are solved using ML
algorithms: equipment monitoring [1], load forecasting [2], forecasting of renewable sources
of energy (RES) [3], adjustment of power system control devices [4], state estimation [5],
and disturbance detection [6]. However, in modern operation and control of power systems,
the preference is still given to the conventional methods based on deterministic approaches.
On the other hand, ML methods have evolved into effective tools in analysis and control
of power systems in terms of time response, accuracy, and adaptability. In addition, the
ever-growing use of phasor measurements [7] will significantly increase the amount of
data being exchanged between power system facilities and control centers, which has a
considerable impact on the operation time of conventional methods [8] in terms of power
system analysis.
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One of the key tasks in controlling the electrical modes of power systems is assessment
of the dynamic stability of synchronous generators with the subsequent application of
emergency control. Evaluation of the dynamic stability of a synchronous generator is
a complex nonlinear problem with a wide range of influencing factors: pre-emergency
loading of synchronous generators, the place of occurrence of a short circuit, the duration
of a short circuit, pre-emergency voltages in the nodes of the electrical network, etc. The
high speed of transient processes, the nonlinear relationship between the parameters of the
electrical regime and the large dimensions (up to several thousand nodes and branches) of
the protected sections of power systems, and the presence of errors in the parameters of
power equipment lead to significant time costs for assessing dynamic stability due to the
use of methods with a rigidly defined algorithmic basis [9].

In conditions of digital transformation, increased data flows, and possible constraints
of operation time for conventional algorithms, ML methods provide new opportunities. In
particular, transient stability analysis can be a potential application of ML methods. The
traditional methods of solving this problem are:

• Numerical integration of a system of algebraic differential equations, which describe
the dynamic behavior of a power system;

• Energy-based analysis (equal area criterion) [9].

These approaches have drawbacks related to the significant amount of time required
for numerical integration of large power system models and possible insufficient accuracy
of energy-based methods. ML methods can be applied to negate these drawbacks, which
could considerably reduce the processing time while maintaining required accuracy.

The use of ML methods makes it possible to significantly speed up the process of
assessing dynamic stability due to the absence of the operation of numerical differentiation
of a nonlinear system of algebraic differential equations describing a dynamic model of the
power system. In addition, the use of ML methods makes it possible, in the training, to
take into account sample data that is obtained not only during mathematical modeling of
transients on a simulation model but also from measurements of real transients observed
during disturbances occurring in real power systems. The advantages of ML methods
described above allow us to move to a qualitatively new level of dynamic stability analysis
due to greater adaptability and consideration of data of different natures: mathematical
and physical.

The purpose of this paper is to assess the impact on the accuracy of ML methods of
topological connectivity of the electrical network and to develop recommendations for
training and using ML algorithms to assess dynamic stability.

2. Literature Review

The problem of transient stability analysis of power systems is considered to be
non-linear and large scale. Traditionally, dynamic response of a power system is found
using numerical differentiation of algebraic differential equations, which describe dynamic
models of synchronous generators, loads, transmission lines, emergency control devices,
etc. The results of this numerical differentiation greatly depend on parameters of models
in use and are not without considerable time costs. Time costs of small signal stability
analysis can be reduced by means of linearization of the equation system that describes the
behavior of a power system. Linearization cannot be applied to the problem of transient
stability due to rapid and significant changes of electrical parameters during transients.

To minimize the time cost of numerical differentiation, qualitative methods based on
analysis of kinetic energy of generator rotor during a disturbance and potential energy in
post-disturbance state are used. The number of calculations can be drastically decreased by
utilizing reduced models of power systems [10].

The next stage in the improvement of accuracy and operation time of transient stability
analysis of power systems has been the application of highly accurate PMUs [11]. These
devices have made it possible to significantly increase the sampling rate of power system
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parameter estimation, thus becoming an effective tool of big data analysis in power systems
in real time.

The growing amount of digital data and the continually developing theory of ML
have led to the emergence of completely new methods of transient stability analysis. The
input data can be represented by measurements obtained from instrument transformers
on facilities of a power system and results obtained from simulations of processes in the
power system under consideration. These sources of data have their own advantages and
drawbacks. The measurement data are more informative in terms of the power system
state, considering various control systems with their settings. Digital simulations of a
power system can be used in analysis of a set of power system states for the purposes of
emergency and dispatch control. Both data sources are regularly used to form learning and
testing data sets for the ML-based methods of transient stability analysis.

In the framework of the ML theory, the problem of transient stability analysis can
be reduced to the problem of binary classification with two classes: unstable state and
stable state. Since the unstable state is much rarer than the stable one, the sample data
become unbalanced, which has a huge impact on learning and operation of an ML model.
When learning and testing samples are formed, the data may be noisy and incomplete and
possess outliers.

Finding the features that have a significant impact on the state of the class (stability) is
of great importance in forming the testing and the learning samples. The following signals
of power system parameters can be considered in order to analyze transient stability:
angular velocity of generator rotor, load angle, active and reactive power, etc.

Features of the frequency domain can be considered as well. Many conventional ML
methods are not designed to operate with signals from the time domain. This obstacle can
be overcome by extracting two specific points from the time domain, namely before and
after a disturbance. This procedure reduces the times series to two points [12], thereby
simplifying the problem to be solved and increasing the speed of learning and that of the
ML model operation. The further reduction of dimension number can be accomplished via
principal components analysis [13], singular value decomposition, or linear discriminant
analysis. The use of the method of random selection of features for the purpose of learning
time minimization was suggested in [14].

Since loss of transient stability is a relatively rare event in modern power systems,
it is important to construct a dataset by means of performing series of electromechanical
transient calculations using power system models. These calculations are carried out with
varying load and generation at nodes of a power system in addition to varying location,
type, and duration of faults [15]. The selection from the obtained dataset is made on the
basis of the distribution recommended in [16], where 10% are three-phase faults, 20% are
two-phase faults, and 70% are single-phase faults. The resultant sample is unbalanced most
of the time, with stable states being prevalent. The stratified random sampling is conducted
to separate learning and testing samples while maintaining data balance.

The problem of transient stability analysis of power systems can be solved using the
following ML algorithms:

• Artificial neural networks (ANN);
• Support vector machine (SVM);
• Random forest (RF);
• Ensemble algorithms (EA);
• Deep learning (DL).

One of the first studies that covered ANN application in transient stability analysis
described ANNs with a single hidden layer [17] or parallel ANNs. However, due to lack
of computational capacity, ANNs have not found widespread use. As computational
capabilities of equipment began to grow, the deep learning algorithms have become a
tool for the transient stability analysis [18–20]. These algorithms are based on ANNs with
multiple layers of different types. The main difficulty of applying the deep learning is
related to initialization of layers, selection of the activation function, finding the optimal
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learning speed, etc. In the framework of transient stability analysis, feature selection is not
assumed to be performed in the deep learning algorithms, unlike in other ones.

Transient stability analysis can be reduced to the problem of binary classification
with two classes: stable state or unstable state. Hence, classification methods are often
used to solve the problem. SVM is one of the major algorithms [21–23]. Advantages
of using the SVM include short time response and high reliability caused by quadratic
programming procedures in convex regions with a single solution. The main drawbacks
are high sensitivity to noise in input data and absence of a common approach to automatic
algorithm core selection in the case of linear partibility of classes.

The RF algorithm is based on using the aggregations of elementary classification
algorithms, called decision trees. The classification result for each separate tree is obtained
with a weight, which is a priori assigned during learning. In [24–26], the RF algorithm
was used to evaluate transient stability of complex power systems. Advantages of this
algorithm include high efficiency due to the possibility of using parallel calculations and a
small number of parameters, leading to simplicity of adjustment. The main disadvantage
is its proneness to re-learning.

The ensemble algorithm is presented by multiple basic algorithms. The common
solution is obtained by means of solving equations for each basic sub-algorithm. The
subsets of bagging, boosting, and stacking compose the ensemble algorithms. The boosting
and the bagging algorithms use results of basic algorithms, while the stacking algorithm
uses the second-level model, which learns using data from the basic models. The ensemble
algorithms were used in transient stability analysis of power systems in [27–29]. Advan-
tages of the EA are the following: great generalization ability, ability to identify outlying
data, and short time response. Drawbacks include proneness to re-learning and necessity
to form relatively large learning samples.

The XGBoost is considered to be one of the most effective EAs [30]. There are several
reasons for choosing this algorithm as the tool of transient stability analysis of power
systems: ability to process data that have gaps and noise; almost unsurpassed ability to
work with table data in solving problems of classification and regression; and high win rate
in tests at kaggle.com (accessed on 3 January 2023). In addition, the XGBoost algorithm
has high accuracy and efficiency, re-learning-based tuning via regularization, and a large
number of adjustable parameters.

Other ML algorithms are also applied in solving the problem of transient stability
analysis. The gradient boosting was used in [31], while the kernel regression was used
in [32].

In the study [33], the DL algorithm was used to assess the dynamic stability of complex
power systems. The algorithm was tested on real data recorded during the historical obser-
vation of disturbances occurring in the power system. A parallel convolution algorithm
was used to eliminate redundant input features. The assessment of the dynamic stability of
the power system was carried out on the basis of the Deep Forest algorithm, in which the
authors made a number of improvements. The test result showed the advantages of the
improved algorithm used in forecasting accuracy, learning speed, and update time.

DL is able to generate new functions from a limited set of functions located in the
training data set. Therefore, deep learning algorithms can create new tasks to solve the
current ones. Another advantage of DL algorithms relates to the ability to determine the
most important functions, which allows deep learning to effectively provide specialists with
an accurate and reliable analysis result. The main drawback of DL algorithms is associated
with the complexity of interpreting the results obtained and the high resource intensity.

The Table 1 shows a comparison of ML algorithms.
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Table 1. Comparison of ML algorithms.

Algorithm Advantages Disadvantages

ANN [17] Short time response Time-consuming learning procedures

SVM [21–23] Short time response
Sensitivity to noise in the input data,

no automatic selection of the
algorithm core

RF [24–26] Parallel calculations, simple
adjustment Proneness to re-learning

EA [27–29] Short time response Large amounts of data are required

XGBoost [30] Short time response, high
accuracy Large amounts of data are required

DL [33]

Ability to create new functions
from a limited set of functions, the

ability to identify the most
important functions

Complexity of interpretation of the
results obtained, high resource

intensity

The key requirements for an ML algorithm for transient stability analysis of power
systems are efficiency and time response. On the basis of these conditions, XGBoost and RF
were selected as the algorithms in this study.

Composition of the learning sample is crucial since it directly affects the results of tran-
sient stability analysis. Generally, transient stability depends on the following parameters:

• Pre-disturbance active power output of a synchronous generator;
• Voltage at generator bus;
• Impedance between fault location and generator bus;
• Governor control response.

Influence of power system topology on transient stability analysis was not considered
in the reviewed studies. The total impedance between fault location and generator bus
depends on fault type and power system topology, i.e., operating states of transmission
lines and transformers. Hence, the purpose of this research is to study of topology influence
on transient stability analysis on the basis of ML methods.

The original contribution of this paper is to consider the topological connection of
the electrical network when identifying the loss of dynamic stability of a synchronous
generator on the basis of machine learning methods. This task is particularly relevant
because of the obvious influence of the total resistance from the synchronous generator in
question on the short-circuit point. Another important task is to determine the degree of
influence of the topology of the electrical network on the accuracy of identification of the
loss of dynamic stability of the synchronous generator.

3. Transient Stability Analysis of a Test Power System Model

The test studies were carried out through simulations of electromechanical transients
using Matlab/Simulink. The machine learning algorithms were implemented using the
Python3 library called Scikit-learn.

3.1. Data Sampling

Simulations were carried out on the test power system IEEE39 (Figure 1). These results
were used in sampling of learning and testing data for algorithms XGBoost and Random
Forest. A description of the model and its parameters can be found in [34].
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Figure 1. Test power system IEEE39.

A series of electromechanical transients were simulated to form sampling sets with
the following parameters:

• Power outputs of synchronous generators (nine generators in total; Generator 1 is
performing the role of the external power system, and its stability is not taken into
account) were varied in the range of 60%, 80%, and 100% of their rated capacity;

• Fault locations (buses): Single-phase, two-phase, and three-phase faults with duration
of 0.15 s were simulated in each bus (39 buses in total);

• Topology of the power system: Maintenance of a single line was simulated (37 lines in
total), no transformer maintenance was considered.

Thus, the total amount of electromechanical transient simulations (N) is:

N = N1·N2·N3·N4 = 3·3·38·37 = 12, 654, (1)

where N1—number of generator power output options, N2—number of fault types, N3—
number of fault locations–buses (no fault is simulated in Bus 39), and N4—number of single
line maintenance events.

Occurrence of transient instability is detected by load angle of the generator (δ) exceed-
ing 360 degrees. Figure 2 illustrates three-phase fault at Bus 23, which results in instability
of Generators SG6 and SG7.
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The data sample was obtained as the result of a series of electromechanical transients
(Table 2).

Table 2. Structure of the obtained data sample.

No Name Description

Features
1 f1 Maintenance of Line 1–2 (values: 1 or 0)
2 f2 Maintenance of Line 2–3 (values: 1 or 0)
37 f37 Maintenance of Line 39–1 (values: 1 or 0)
38 f38 Active power outputs of Generators SG 2–10 (values: 0.6, 0.8, or 1)
39 f39 Fault at Bus 2 (values: 1 or 0)
77 f77 Fault at Bus 38 (values: 1 or 0)
78 f78 Single-phase fault (values: 1 or 0)
79 f79 Two-phase fault (values: 1 or 0)
80 f80 Three-phase fault (values: 1 or 0)
81 f81 Pre-disturbance load angle of Generator SG 2 (values: from 0 to 180)
90 f90 Pre-disturbance load angle of Generator SG 10 (values: from 0 to 180)

91 f91 Pre-disturbance voltage of stator winding of Generator SG 2 (values: from 0.5
to 1.2 from rated voltage)

100 f100 Pre-disturbance voltage of stator winding of Generator SG 10 (values: from 0.5
to 1.2 from rated voltage)
Target

1 t Transient stability of Generators SG 2–10 (values: 1 or 0)

Since the sample was obtained as a result of mathematical simulation, it has no gaps,
outliers, or noise.

The issue of the occurrence of fluctuations in the post-emergency mode is very impor-
tant. The nature of such fluctuations is related to the settings of the system regulators. In
the algorithms considered, the influence of the control systems is considered directly by
taking into account the load angle of the synchronous generator and the voltage on the
stator winding in the training and test samples.

The Spearman correlation was analyzed to assess impact of each feature on the results
of classification:

SpearmanC = 1 −
6
∫

d2

n(n2 − 1)
, (2)

where SpearmanC—Spearman correlation value, d—difference between ranks for the pair
(X,Y) of two numbers series, and n—length of series X and Y. A rank is the number of
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a value in the series after sorting by value. The Spearman correlation can be applied to
both numerical data and categories expressed numerically. The correlation can indicate the
interdependence of varied parameters.

The results of features with ratio of correlation by absolute classification result of less
than 10% are shown on Figure 3.
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The Spearman correlation was calculated using the scipy library. Since the values of
correlation of features in Figure 3 are considered insignificant, these features are removed
from the data sample. The sample was separated according to the ratio of 80%:20% (80%—
learning sample, 20%—testing sample).

3.2. The XGBoost Algorithm Learning Results

The parameters were set using the function GridSearch in order to increase the accuracy
of the XGB algorithm. This function is used to search through combinations of parameters
with the goal of finding the combination that provides the greatest model quality metric. In
the process of learning the XGBoost algorithm, the following parameters were obtained:

• L1 regularization, penalty for weight functions (base value of 0): 0.1;
• L2 regularization, penalty for weight functions (base value of 0): 0.2;
• The required minimum decrease of the function in a process of creating a new leaf

(base value 0): 0.5;
• The maximum tree depth of the base classification system. This parameter determines

complexity of the model and level of retrain (base value 3): 5;
• Base value of probability that a data line corresponds to binary cases; it allows for

correction of the dropping accuracy due to class imbalance (base value 0.5): 0.8;
• A basic classificatory number of the composition; it controls complexity of the model: 400;
• Pace of gradient descent; it controls the possibility of losing the local minima: 1;
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• Training sample rate; this parameter is selected randomly for training of one tree (base
value 1): 0.8.

Feature importance for the trained model is described in Figure 4. Feature importance
for the algorithm can be described by increased accuracy after using a feature in tree
branches during splitting. Importance provides an estimate of how useful or valuable each
feature of the sample is in constructing extended decision trees in the model. The more a
feature is used to make key decisions with decision trees, the higher its relative importance.
The importance is calculated explicitly for each feature in the dataset, which allows one to
rank the features and compare them. The importance is calculated for one decision tree as
the amount by which each feature separation point improves the productivity indicator,
weighted by the number of observations for which the node is responsible. The measure of
efficiency may be the Gini index used to select the separation points, or it may be another
more specific error function.
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The greatest importance for transient stability analysis of the test power system using
XGBoost algorithm is the feature of three-phase fault at Bus 16 because this bus has a high
number of connections with other buses. Figure 5 describes an example of one of the base
classifiers obtained after training the XGBoost algorithm.

The rules of classification and the values in the algorithm’s leaves are defined after the
XGBoost algorithm learning. In test data processing, all the base classifiers were involved
in the test data processing, which are the base for transient stability analysis.
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Figure 5. An example of one of the base classifiers of the XGBoost algorithm.

3.3. The Results of the Random Forest Algorithm Learning

The parameters of RF were set using the function GridSearch to increase the algo-
rithm accuracy. During the learning stage of the Random Forest algorithm, the following
parameters were obtained:

• The number of base classifiers (base value 100): 550;
• Tree depth of a base classifier (base value 1): 3;
• The minimum number of copies of the data required for splitting (base value 2

strings): 0.005;
• The minimum rate of data copies in the leaf (base value 1 string): 0.002;
• Fraction of features in the training sample, chosen randomly for learning of one

tree: 0.6;
• Class weights in the importance-graph-described weights are the following: for Class

0, where weight for the Class 1 is constant (base value 1 for every class): 6.

The feature importance values for the trained model are shown in Figure 6. The largest
importance for instability classification is the feature of the three-phase fault at Bus 16. A
similar result was obtained for the XGBoost algorithm.

A few basic classifiers of the trained Random Forest algorithm are shown in Figure 7.
The information regarding a feature and the splitting rule is described in leaves or nodes of
the tree; a number of data strings in a node expressed in %; and classification of a node or
leaf in terms of class (0—transient instability, 1—transient stability).

The sequence of calculations to determine the importance of the Random Forest
algorithm features is as follows:

• Selection of a random data set whose target variable is categorical;
• Dividing the data set into training and test parts;
• Calculation of the impurity node of each specific column where it branches. This is

determined by calculating the right impurity and the left impurity branching off from
the main node;

• Calculating the importance of the column function for this particular decision tree by
calculating weighted averages of impurity nodes;

• The obtained values of the importance of the features will be averaged over the number
of decision trees constructed. These obtained values of the importance of the features
will be the final values in relation to the random forest classifier algorithm;

• The values will be in the range from 0 to 1. This will give a clearer idea of the choice of
functions or columns for effective training of the model.

The rules of data splitting in every node of the base classifier are defined in the process
of the Random Forest algorithm learning.
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4. A Configuration of the Information-Gathering System for the Transient Stability
Analysis of a Power System Based on the Machine Learning

Figure 8 describes the possible integration of the ML model for transient stability
analysis.
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The results of mathematical modeling or data obtained from a real power system can
be used as the learning set. In the case of using real measurements, it is necessary to filter
the data, eliminate the outliers, and fill the gaps in the data.

To form a training sample, an approach of combining data obtained from the following
sources can be used:

• Calculation results of electromechanical transients obtained from a verified model of
the power system. In the practice of managing the modes of power systems, simulation
models are used, the parameters of which can be taken from the passports of power
equipment or test data. The values of loads, voltage levels, and other parameters of
the electrical regime are obtained as a result of the assessment of the condition;

• Data obtained as a result of recordings of real transients occurring in the power system.

Such an approach to the formation of a training sample will ensure the sufficiency of
its volume (through the use of mathematical modeling) and better representativeness due
to the consideration of real processes occurring in the energy system.

After forming the learning sample, it is necessary to adjust the algorithm, which can
be accomplished automatically or manually. After training and testing, the algorithm is
ready to be used in the transient stability analysis of a power system.

It is suggested to use PMU data as the pre-disturbance data. Combinations of highly
accurate PMU measurements and state estimation procedures [35] make it possible to
obtain a complete list of state and equipment parameters, influencing transient stability.
Results of transient stability analysis can be used in emergency control of power systems.

5. Results and Discussion

In this study, application of two ML algorithms for classifying the dynamic stability of
the post-emergency operation of the power system was considered. XGBoost and Random
Forest were chosen as the ML algorithms due to their effectiveness and the availability of
anti-retraining techniques.

The comparative results of testing the XGBoost and Random Forest algorithms are
presented in Table 3. The performance of the algorithms was based on the precision and
recall metrics given by the following equations:

precision =
tp

tp + f p
, (3)

recall =
tp

tp + f n
, (4)

where tp—true positive decision, fp—false positive decision, and fn—false negative decision.
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Table 3. Comparison of results of testing the trained algorithms.

Parameter XGBoost Random Forest

Accounting for power system topology
Accuracy 0.915 0.816

Average accuracy between
classes 0.864 0.744

Precision 0.898 0.847
Recall 0.858 0.851

Not accounting for power system topology
Accuracy 0.806 0.801

Average accuracy between
classes 0.817 0.711

Precision 0.815 0.816
Recall 0.824 0.801

It was found that the inclusion of the electrical network topological connectivity
provides an increase in the algorithms’ accuracy. In the case of the test sample, accuracy of
the instability classification for XGBoost is 91.5%, while that for Random Forest is 81.6%.
The consideration of the topology of a power system increases the accuracy of algorithms
by 10.9% and 1.5%, respectively.

Thus, on the basis of the presented results, it can be concluded that the XGBoost algo-
rithm is preferable to the Random Forest algorithm due to greater accuracy in classifying
the loss of stability of power systems.

6. Conclusions

The algorithm of transient stability analysis of a power system based on algorithms
XGBoost and Random Forest is presented in this study. The topology of a power system
was taken into account. The literature review covers current studies of transient stability
analysis based on machine learning methods.

The test power system was IEEE39. The data sample of 12,654 electromechanical
transients was obtained as a result of power system simulations.

After learning, parameters of the algorithms XGBoost and Random Forest were ob-
tained. In the case of the test sample, the accuracy of instability classification for XGBoost
is 91.5% taking into account topology of the power system, while that for Random Forest is
81.6%. When topology is accounted for, the accuracy of the algorithms increases.

The practical application of the algorithms considered for system operators of the
power system can be considered in the following tasks: monitoring of the reserve of
dynamic stability and adaptive emergency management [36].

Further studies will cover development of the AI-based emergency control of a power
system. This problem is drastically different from that of transient stability due to increased
variability caused by selection of the optimal control actions set. In addition, the second di-
rection of further research is the approbation of the considered machine learning algorithms
on more complex models of power systems and on data obtained from real power systems.

Despite the proven effectiveness of using ML algorithms to assess the dynamic stability
of power systems, the proposed method does not consider the presence or absence of low-
frequency oscillations in the post-accident mode of operation. Consideration of this problem
is planned in subsequent studies.

Another direction for further work is the approbation of the proposed method for
assessing dynamic stability on data obtained from the real power system.
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