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Abstract

Reliable operation of power systems (PS), including those with a significant share of hydropower plants (HPPs) in the
nergy balance, largely depends on the accuracy of forecasting power generation. The importance of power generation forecasts
ncreases with the development of renewable power generation, which is stochastic by nature. Those kinds of tasks are
omplicated by the lack of reliable information on metrological data and estimated energy consumption, which is also stochastic.
n the medium-term forecasting (MTF) of power generation by HPPs, the seasonality of changes in flow and inflow of water
hould be taken into account, which significantly affects the reserves and regulatory capabilities of the power system as a
hole. This work discusses the problem of constructing a model for MTF of power generation HPP in isolated power systems

IPS), taking into account such atmospheric parameters as air temperature, wind speed and humidity. To address constant
limatic changes, this paper suggests implementing machine learning models. The proposed approach is characterized by a
igh degree of autonomy and learning automation. The paper provides a comparative study of the machine learning models such
s polynomial model with Tikhonov’s regularization (LR), k-nearest neighbors (kNN), multilayer perceptron (MLP), ensembles
f decision trees, adaptive boosting of linear models (ABLR), etc. Computational experiments have shown that the machine
earning approach yields the results of sufficient quality, which allows to use them for forecasting of power generation HPP in
solated power systems under conditions of climate change. The Adaptive Boosting Linear Regression model is the simplest
nd most reliable machine learning model that has proven itself well in the tasks with a relatively small amount of training
amples.

2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eer-review under responsibility of the scientific committee of the International Conference on Energy Engineering and Power Systems, EEPS, 2022.

eywords: Medium-term forecasting of power generation; Hydropower plant; Isolated power system; GBAO; Ensemble models; Climate change;
emperature

∗ Corresponding author.
E-mail address: sa.dmitriev@urfu.ru (S. Dmitriev).
https://doi.org/10.1016/j.egyr.2022.09.164
2352-4847/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:
//creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the International Conference on Energy Engineering and Power Systems,
EEPS, 2022.

http://www.elsevier.com/locate/egyr
https://doi.org/10.1016/j.egyr.2022.09.164
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2022.09.164&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sa.dmitriev@urfu.ru
https://doi.org/10.1016/j.egyr.2022.09.164
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. Safaraliev, N. Kiryanova, P. Matrenin et al. Energy Reports 8 (2022) 765–774

(
a
a
s
c

o
d

d
a
i
d

o
m

f
t
t

a
[
a
A
i
a
s
a
fi
S
s
m
m
d

f
r
e

2

2

i
R
T
u
h
a

1. Introduction

Hydropower today remains a significant and no less environmentally friendly type of renewable energy source
RES) for electricity generation worldwide, providing 19% of the electricity of the entire globe [1,2]. In most cases,
small hydroelectric power plant (SHPP) will be built and operated on a river without a dam or a small reservoir

nd represents the most cost-effective and environmentally friendly technologies for electricity production, which
hould be considered for implementation to provide electricity to decentralized areas in less economically developed
ountries [3–6].

Accurate and reliable forecasting of power generation by the HPPs is essential for the management and planning
f hydropower generation. Due to the rapid development of distributed generation, there is not enough historical
ata on power generation, which makes it difficult to develop forecast models.

The complexity of forecasting the generation of HPPs is because of several reasons: complex nonlinear
ependencies of hydrological parameters; influence of various meteorological factors; the influence of factors such
s the level of snow in the mountains or the amount of precipitation in previous months extended over time; changes
n the dependencies because of changes in climate and topography; the need to use long-term observations (large
atasets) [7–9].

The task of forecasting of power generation HPP is considered to be one of the most difficult tasks in the field
f intellectual data analysis; it requires complex analysis of large amounts of data with view to the influence that
ultiple relationships and dynamic processes have on power consumption.
MTF of power generation for each type of RES is a key issue for a PS, since such forecasting is the basic tool

or ensuring reliable power supply, organizing maintenance, planning power reserves, and repairs, and maintaining
he regime. MTF is critical for the owners of the renewable energy resources in order to define their behavior in
he electricity market, schedule maintenance tasks and set targets with a one-week horizon.

Most of the published papers dedicated to the development of MTF models and related to hydropower issues
re focused on management of water resources based on projection data for the water inflow to reservoirs only
10–12], or take into account the information on the water runoff and inflow [13,14]. A number of studies are aimed
t assessing the capacity and planning of generation for mini-HHPs [15], small-HHPs [16], and large HPPs [17].
s a rule, the models applied for medium-term (one week ahead) forecasting of power generation do not take

nto account climatic changes. Climate change usually occurs gradually, but unpredictable short-term changes can
rise. As a result, machine learning models built using meteorological factors with good results during testing can
ignificantly decrease forecasting accuracy after some time due to changing external conditions. The risk of such
scenario is especially high in the absence of data from a long history of observations. Therefore, it is necessary,
rstly, to analyze the influence on the model accuracy even of those factors, the benefits of which seem obvious.
econdly, it is reasonable to apply models that are not prone to overfitting and can be re-trained on a relatively
mall dataset when climatic conditions change, adapted to the changes. There are a lot of medium-term forecasting
odels based on different nature: autoregression models, ensemble regression trees, neural networks (from compact
ultilayer perceptrons to deep recurrent networks). Besides choosing a model, it is necessary to analyze the initial

ata pre-process the data, as well as select the characteristics.
This paper studies the implementation of compact models based on machine learning (ML) for medium-term

orecasting of power generation HPP under climate change. The characteristic feature of applied ML models is
elatively small model size. It allows to train and tune models quickly in the automation model of training and
liminate the risk of overtraining.

. Methodology

.1. Assessment of energy resources of the research object

The object of the study is the IPS of the Gorno-Badakhshan Autonomous Oblast (GBAO) — a region located
n the eastern part of the Republic of Tajikistan (RT) and Central Asia. GBAO is one of the richest regions of the
T in terms of reserves and potential of hydropower, but today less than 1 percent of the existing potential is used.
he hydropower resources of small and large mountain rivers in the region are so large that when the level of their
se reaches the range of 20%–25%, GBAO will return to one of the richest regions of the country. The existing
ydropower potential of GBAO reflects the economic efficiency and commercial benefits to justify its use, as well

s for the construction of small, medium and large HPPs [18,19].
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To date, the network of hydrometeorological observations in the RT and in particular in the studied region is
onsidered less developed and studied. Thus, it will be difficult to assess the real potential of wind and solar energy
n the region [20,21].

Fig. 1 shows the geographical location of the HPP and substations in the GBAO IPS for illustrative representation.

Fig. 1. Geographical location of the Gorno-Badakhshan Autonomous Oblast electric power system.

The IPS of GBAO is operated by “Pamir Energy” company, the power of which reaches from 500 kW to tens
f MW. For a decade, the IPS GBAO has been experiencing difficulties due to the lack of sustainable power supply
uring the heating season, starting from the end of October and until the beginning of April. The main reasons for
he shortage of electricity are; water shortages in winter, lack of electricity market, isolated operation of the PS,
ack of large storage and increased consumption during this period [22–24].

.2. Problem statement and initial data

The following forecasting task was formulated:

Y ∗
= f (X) (1)

here Y* is the week ahead forecast of daily power generation, X is the input data (features) vector, f (X) is a
redictive model:

As the main quality indicator mean absolute percentage error (MAPE) was used:

M AP E =
1
n

n∑
i=1

⏐⏐⏐⏐ y∗

i − yi

yi

⏐⏐⏐⏐ (2)

here n – is the dataset size (number of days); y∗ – predicted value for the i th day; y – actual value.
i i
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The applied dataset contains daily values of generated power (in the isolated power system of GBAO) from
ovember through March for the 5 years (2015–2019), and average daily temperatures, data for 765 days. For data
rocessing, the numbers of the months were converted as follows: November = 1, December = 2,. . . March = 5.

Year count starts from 2015, so the year numbers are converted to the range 1–5. Fig. 2 shows generation graphs
for the same month (January).

Fig. 2. Fragment of the data sample (January 2015–2019).

2.3. Data analysis and sampling for applying machine learning models

The first stage of the creation forecasting model is feature extraction. The calendar features, previous power
values were used. This research also checks the hypothesis about the influence of the average daily temperature
on forecast accuracy. Fig. 3 shows a matrix of Pearson’s correlation coefficients for factors that can be used in
forecasting. In addition, the retrospective data on power generation during the previous days is used. One can
see that out of meteorological factors, temperature has significant influence (coefficient 0.357); besides, there is a
noticeable year on year change (coefficient 0.375).

The resulting structure of the data set for building regression models is shown in Table 1, where m – is the length
f the used time series of historical values. If a week is used, from m = 7, two weeks – 14, etc. For example, if
= 7 and a forecast is given for January 26, then the projection will use the retrospective data from January 19

G7, 26 – 7 = 19) through 13 (G13, 26 – [7 + m – 1] = 13).

Table 1. Sample structure for applying ML models and an example of filling.

Day Month Year Average daily
temperature, C0

G7, mil
kWh

G8, mil
kWh

. . . Gm + 7 − 2, mil
kWh

Gm + 7 − 1, mil
kWh

G, mil kWh
(forecast target)

26 3 2 −3.2 0.687 0.721 . . . 0.684 0.782 0.724

The number of samples in the dataset depends on m, since there is no sufficient retrospective data for the first
+ 7 days of the initial month (November). The dataset is divided into training–validation and test sets in a ratio

f 4 to 1 (in this case, the last year of the whole dataset falls into the test set). It should be noted that the dataset
as not shuffled; as a result, the model is trained on the retrospective data and tested on the newest data. It brings

he testing process closer to real-life conditions. Table 2 shows the dataset sizes for different values of m.

Table 2. Sets sizes for different intervals of historical data used.

m Number of columns Size of training set (days) Size of training set (days) Size of training set (days)

7 11 576 110 137
14 18 547 104 130
21 25 518 98 123
768



M. Safaraliev, N. Kiryanova, P. Matrenin et al. Energy Reports 8 (2022) 765–774
Fig. 3. Matrix of correlation coefficients.

2.4. Machine learning models applied

The ML models, the selected hyper-parameters and ranges of their values are shown in Table 3. The Random
Search algorithm was applied to tune the models’ hyper-parameters. The selection of hyper-parameters was
performed with m equal to 14. Software implementations of the models, except for XGBoost [25], were taken from
the open library Scikit-Learn [26]. For hyper-parameters not listed in Table 3, the default values from the specified
sources [25,26] are used. The Random Search algorithm was applied to tune the models’ hyper-parameters.

For all models, we analyzed the influence of the length of the time series of previous generation values and the
influence of temperature on the accuracy of forecasts.

Table 3. Hyper-parameters of the applied machine learning models.

Model Hyper parameter Max.
meaning

Max.
meaning

Step Matched
value

Linear/polynomial regression with Tikhonov
regularization [4*] (LR)

Polynomial degree 1 3 1 1

k- nearest neighbors (kNN) Number of nearest neighbors k 2 8 1 2

Adaptive Boosting Decision Trees (ABDT) Number of base models 10 50 1 14
Depth of trees 2 6 1 3
Minimum data points for branching 2 8 1 3

Adaptive Boosting Linear Models (ABLR) Number of base models 2 10 1 2

Random Forest (RF) Number of base models 10 50 1 37
Depth of trees 2 10 1 5
Minimum data points for branching 2 8 1 2

Extreme Gradient Boosting (XGB) Number of base models 10 50 1 29
Depth of trees 2 10 1 4
Number of base models 0.01 0.5 0.05 0.3

Multilayer Perceptron (MLP) 1th hidden layer neurons 10 200 10 90
2th hidden layer neurons 10 100 10 80
769
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3. Results and discussion

3.1. Results of machine learning models

The results of implementation of the models for various variants of the used input features on the test set are
hown in Tables 4–5 and Fig. 4.

Fig. 4. Comparison of model results.

Table 4. Comparison of the results of the models (MAPE, %); in each line, the best results obtained for the
corresponding model are shown in bold type.

Table 5. Comparison of the results of the models (mean absolute err, MWh); in each line, the best results
obtained for the corresponding model are shown in bold type.

3.2. Discussion of results

The obtained results lead to the following conclusions.
1. Ensembles of decision trees (ABDT, RF, XGB), that is, models with discrete (piecewise constant) output, are

nferior to models with continuous output by 2–5 percentage points.
2. For models using linear regression (LR and ABLR), an increase in the interval of the applied historical data

lightly reduces the error, possibly due to a more accurate computation of trend.
3. The best accuracy was obtained using adaptive boosting with linear regression (ABLR) as the base model,
hich coincides with the results obtained earlier for the projection of the power consumption of this system [27].
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4. The ABLR has an ultra-small model size compared to an ensemble of decision trees or even a small neural
etwork. As a result, it significantly reduces the risk of overfitting. Also, the learning speed of this model is very
igh. Consequently, the ABLR model can be retrained on new data automatically and autonomously without the
eed for control by a specialist who would analyze the model’s results and adjust its hyper-parameters.

5. A significant decrease in the accuracy of models when using meteorological data is a somewhat unexpected
esult that requires additional analysis. Probably, climate change from year to year also leads to a change in the
ependencies between power generation and temperature, so that the model trained on the data of the first four
ears detects the dependencies between temperature and generation that turn out to be different the following year.

This is confirmed by the visualization shown in Figs. 5–7. The analysis shows that the dependency of generation
n temperature varies significantly from year to year. Even the correlation coefficients differ significantly, in 2015
he Pearson correlation coefficient between generation and temperature being 0.38, while in 2019 it amounted to
.77, that is, in 2019, the temperature had a significantly greater effect on generation. Therefore, when a model
s trained on historical data, it can detect certain dependencies that discontinue to work in the future due to the
easons above.

Fig. 5. Distribution of days by generation and temperature, 2015 on the left, 2016 on the right.

Fig. 6. Distribution of days by generation and temperature, 2017 on the left, 2018 on the right.
771
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Fig. 7. Distribution of days by generation and temperature, 2019 on the left, 2015–2019. on the right.

Fig. 8. Comparison of forecasts and actual power values, 2019 (test set).

The right part of Fig. 7 also shows that the year of 2019, which was included in the test set, is generally
characterized by a higher generation value than the previous 4 years, especially at temperatures above 0 C0.

omparison of the forecast obtained by the best suitable model for this task (Adaptive boosting of linear regressions
ith Tikhonov’s regularization) is shown in Fig. 8. The average error in the test sample was 5.23%, or 44 MWh
ith an average daily generation of 718 MWh. Tikhonov’s regularization (L2-regularization) can be written down

s follows:

w∗
= arg min

w

(
n∑

i=1

(yi − (wX i − b))2
+ λ ∥w∥

2
2

)
(3)

In expression (3) w, b are regression coefficients, ∥w∥2
2 – the element of the loss-function to reduce the risk of

verfitting.
Since the adaptive boosting model is a linear sum of the base regressors, after the training is completed, the final

nsemble model combining 4 linear models can be folded into a single one.

∗
yi = f (xi ) = a1 yeari + a2monthi + a3dayi + a4 E7,i + a5 E8,i + · · · a25 E28,i + b
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4. Conclusion

In this paper, the main attention is given to the development of a model for MTF of generation HPP power
or a week ahead in IPS with a high proportion of HPPs. Seven different models were analyzed to forecast power
eneration of HPPs based on retrospective generation data and meteorological parameters. The best result was
btained using adaptive boosting with linear regression as the base model.

The obtained results allow us to conclude with a high degree of accuracy that compact ensemble ML models
re acceptable for the HPP medium-term power generation prediction under temperature changes. The proposed
orecasting method allows to accurately estimate the projected power reserves and opens up the possibility for
ptimization of power generation with a view to climate change.

The results obtained in the course of this study can be used to improve the forecasting of power generation by the
PS of GBAO, which mainly operates at the expense of HPPs, when making informed decisions about the structure
f power generation in the region. The proposed methods can also be used for other power supply companies
perating IPS.

Next line of efforts involves the creation, study and verification of an adaptive model with the possibility of
eriodic additional training in line with apparition of new data and replacement of the outdated part of the training
ample. Such model would constantly and regularly adapt to changing operating conditions.
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