

CUD Digital Repository

This work is licensed under Creative Commons License. The full text can be accessed through

the publisher’s website.

Title (Article) A Secure Peer-to-Peer Image Sharing Using Rubik's Cube

Algorithm and Key Distribution Centre

Author(s) Cherukuri, Aswani Kumar

Sannuthi, Shria

Elagandula, Neha

Gadamsetty, Rishita

Singh, Neha

Jain, Arnav

Sumaiya Thaseen I.

Priya V.

Jonnalagadda, Annapurna

Kamalov, Firuz

Journal Titles Cybernetics and Information Technologies

Citation Cherukuri, A., Sannuthi, S., Elagandula, N., Gadamsetty, R.,

Singh, N., Jain, A., Sumaiya Thaseen, I., Priya, V., Jonnalagadda,

A. & Kamalov, F. (2023). A Secure Peer-to-Peer Image Sharing

Using Rubik’s Cube Algorithm and Key Distribution Centre.

Cybernetics and Information Technologies, 23(3), 126-144.

https://doi.org/10.2478/cait-2023-0029

Link to Publisher Website https://doi.org/10.2478/cait-2023-0029

Link to CUD Digital

Repository

https://repository.cud.ac.ae/items/878d2e1c-461e-43d6-afed-

bf0dcd35fb1c

Date added to CUD Digital

Repository

December 25, 2023

Term of Use Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://doi.org/10.2478/cait-2023-0029
https://repository.cud.ac.ae/items/878d2e1c-461e-43d6-afed-bf0dcd35fb1c
https://repository.cud.ac.ae/items/878d2e1c-461e-43d6-afed-bf0dcd35fb1c
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0

 126

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 23, No 3

Sofia 2023 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2023-0029

A Secure Peer-to-Peer Image Sharing Using Rubik’s Cube

Algorithm and Key Distribution Centre

Aswani Kumar Cherukuri1, Shria Sannuthi1, Neha Elagandula1, Rishita

Gadamsetty1, Neha Singh1, Arnav Jain1, I. Sumaiya Thaseen1,

V. Priya1, Annapurna Jonnalagadda2, Firuz Kamalov3
1School of Information Technology & Engineering, Vellore Institute of Technology, Vellore 632014,

India
2School of Computer Science & Engineering, Vellore Institute of Technology, Vellore 632014, India
3Dept of Electrical Engineering, Faculty of Engineering, Canadian University Dubai, Dubai

E-mail: cherukuri@acm.org

Abstract: In this work, we build upon an implementation of a peer-to-peer image

encryption algorithm: “Rubik’s cube algorithm”. The algorithm utilizes pixel-level

scrambling and XOR-based diffusion, facilitated through the symmetric key.

Empirical analysis has proven this algorithm to have the advantage of large key

space, high-level security, high obscurity level, and high speed, aiding in secure

image transmission over insecure channels. However, the base approach has

drawbacks of key generation being handled client-side (at nodes) and the process is

time-consuming due to dynamically generating keys. Our work solves these issues by

introducing a Key Distribution Center (KDC) to distribute symmetric keys for

transmission, increasing confidentiality, and reducing key-generation overhead on

nodes. Three approaches utilizing the KDC are presented, communicating the

dimensions with KDC to generate keys, standardizing any image to fixed dimensions

to standardize key-generation, and lastly, using a single session key which is

cyclically iterated over, emulating different dimensions.

Keywords: Image encryption, Key Distribution Center, Peer-to-peer encryption,

Rubik’s cube algorithm, Symmetric key.

1. Introduction

In 2023, the global data generation rate exceeded 3.5 quintillion bytes per day, and it

is growing rapidly due to the increasing use of smart devices [1]. M u n e and B h u r a

[2] have highlighted that in this internet era, where almost every piece of data is stored

somewhere permanently, data encryption has become of utmost importance to

maintain privacy. M h a t r e et al. [3] mention that there are always malicious actors

who try to gain unauthorized access to private data, with the intention of leaking it to

cause significant losses to individuals and organizations, using it for blackmail or

ransom, or just to cause trouble for the victim (M e h t a, D h i n g r a and

file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref1

 127

M a n g r u l k a r [4], S a w a n t, S o l k a r and M a n g r u l k a r [5]). Image

encryption is the process of converting an image into a format that is unintelligible

without the correct decryption key or password. It is important for protecting

sensitive or private images. Image encryption typically involves transforming the

image into an unreadable format using mathematical algorithms. The encrypted

image can only be accessed by authorized parties who have the decryption key.

Digital data comprising a variety of information is being transmitted through the

Internet in the post-pandemic world, offering consumers a great deal of ease. But this

data exchange also puts it in danger of theft, leaking, and malicious attacks. Because

they are two-dimensional and large, digital photographs provide a problem for

traditional text-based encryption techniques. The algorithm includes adaptive image

content-based initial random value generation to achieve high plain image sensitivity

and overcome plain image-related attacks. The initial vectors of the Henon map are

obtained from the random value, which is then iterated to obtain key sequences

applied over the Rubik’s cube row and column confusion processes. V i d h y a and

B r i n d h a [6] have focused on how conventional encryption methods like AES,

RSA, DES, etc., have been designed to encrypt text-based data and may not be

suitable for multimedia data such as images and videos. K u m a r and R a n i [7] have

inferred that when a picture is huge, traditional image encryption algorithms like the

Data Encryption Standard (DES) have poor levels of efficiency. Images have unique

characteristics, such as high correlation and redundancy, which can make them

vulnerable to attacks.

Z h a o et al. [8] have suggested that chaotic systems have become more and

more important in a variety of industries. To overcome the shortcomings of existing

chaotic maps, a novel 2D Logistic-Chebyshev Chaotic Map (2D-LCCM) is

presented. Narrow parameter range, limited ergodicity, and uneven sequence

distribution are some of the shortcomings. D e s h p a n d e, G i r k a r and

M a n g r u l k a r [9] suggest Sudoku puzzles, which are mathematical entities with

inherent patterns, have been found to be effective in generating large and intricate

key spaces that are difficult to crack. H e l m y et al. [10] introduce a novel encryption

algorithm based on the 3-D Rubik’s cube for achieving 3D encryption of multiple

images. The proposed method involves encrypting images separately using the RC6

algorithm, and further encrypting them with the Rubik’s cube algorithm. The RC6

encrypted images serve as faces of the Rubik’s cube, which adds a degree of

permutation to the encryption process. The simulation results indicate that this

method is efficient, robust, and secure. G o m a t h i and K u m a r [11] suggest that

with the Rubik’s cube encryption technique, the LSB Steganography algorithm offers

us exceptional security and safeguards the image during transmission. Image

resolution essentially stays the same. Additionally, the speed of data embedding into

images is very fast. I o n e s c u and D i a c o n u [12] presented an implementation of

a communication system for multiple mobile devices with imaging sensors that

encrypt images using the Rubik’s cube encryption algorithm, along with a server. The

study assesses the algorithm’s performance and suitability for mobile devices through

various tests.

file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref8
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref9
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref10
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref11
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref12

 128

A b i t h a and B h a r a t h a n have [13] discussed how more multimedia data is

created and communicated across networks in the sphere of digital and multimedia

applications. This work presents an efficient image encryption solution based on the

Rubik’s cube concept and a chaotic Baker map. It is made up of two layers. The

proposed technique enhances the security level of the Rubik’s cube encryption

technique. A t t k a n, R a n g a and A h l a w a t [14] discuss the challenges of running

high-end security protocols on resource-bound Edge devices in the context of the

growing importance of the Internet of Things (IoT). To ensure peer-to-peer security

among IoT network nodes, proper mutual authentication is necessary, and a secure

session key must be established between source and destination nodes before sending

sensitive data. The article proposes using a Rubik’s cube puzzle-based cryptosystem

to securely exchange parameters among peers and generate session keys. J i n and

P a r k [15] have presented an AI-based approach that uses the state change of Rubik’s

cube to generate keys in a symmetric-key encryption system. By applying the Rubik’s

cube state change algorithm, the approach is able to induce and use the key without

exchanging the pre-shared key, providing the advantage of secure key generation and

management. Due to the key induction method, malicious attackers have limited

information on the keys used for encryption and decryption, thus enhancing the

confidentiality and integrity of the key generation and management process.

C h u m a n, S i r i c h o t e d u m r o n g and K i y a [16] have suggested that for

EtC (Encryption and Transmission) systems, a novel picture encryption approach has

been put forth that makes use of block scrambling techniques to increase security

over existing schemes. The suggested approach allows for the usage of smaller block

sizes as well as a greater number of blocks, enhancing invisibility and security against

various assaults including jigsaw puzzles and brute-force attacks. This innovative

method offers improved security and robustness for image transmission while

offering considerable advantages over current encryption systems [17]. With the

detailed literature analysis, we have learned that concerns about data privacy and

security have been sparked by the increasing use of smart devices, which has

accelerated the generation of data. Traditional text-based encryption methods are

unsuitable for large and two-dimensional digital photographs in the context of image

encryption. Researchers have proposed a variety of techniques based on chaotic

systems, Rubik’s cube, Sudoku puzzles, and block scrambling to address this issue.

In this paper, three methodologies are proposed that use the lightweight Rubik’s

Cube Algorithm along with KDC. The algorithm is made even more lightweight by

eliminating the computational overhead on the nodes resulting from key generation.

First, Alice sends Bob an image with the dimensions M×N. The keys that Alice and

Bob share, KA and KB, are produced by the KDC based on the dimensions that Alice

has provided to it. Second, standardizing the image makes it simpler to use KDC’s

Rubik’s Cube Algorithm by lowering variability and complexity. Lastly, by using a

single session key, Ks, rather than several keys, which may be reused for photos of

different dimensions. Each image’s session key, Ks, is generated by the KDC

depending on its dimensions and sent to the sender. The Rubik’s Cube Algorithm for

picture encryption offers great security and is impervious to statistical and brute-force

attacks. The algorithm is also capable of fast encryption/decryption which is more

file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref13
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref14
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref15
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref16
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23ref17

 129

likely suitable for real-time image transmitting applications. Our work is different

from existing algorithms for image sharing in the following ways:

 The key is generated and distributed by the KDC. This can reduce the

communication overhead due to key generation.

 Enhanced security for image sharing.

 The proposed three methods can be used for different kinds of applications

according to the need.

The remaining part of the paper is arranged as follows: The image encryption

using Rubik’s Cube Algorithm is given in Section 2. The proposed methodologies

are given in Section 3. Section 4 provides an analysis of the suggested methods and

is concluded in Section 5.

2. Image encryption using Rubik’s Cube Algorithm

The outline of the Rubik’s Cube Algorithm is given in Fig. 1. The algorithm consists

of four phases. A random key generation process, confusion of the pixels in the plain

image using the key sequence obtained for the row and columns, respectively, a

simple XOR function applied on the confused image obtained in the previous step

again by utilizing the key sequences generated for rows and columns, respectively.

A detailed description of the phases mentioned is given below.

Fig. 1. Block-diagram of Rubik’s Cube Algorithm

2.1. Random key generation process

This process involves using a random vector α to find prime factors and then storing

the largest prime factor in a list called the prime store I. The user selects an increment

factor β, which is added to the initial α to generate a new random number α= α+ β.

This process of finding prime factors and adding them to the prime store is then

repeated Q times to generate a set of Q prime values. The size of Q is Q=M×N×3

where Q is determined by the number of pixels in an image, with each pixel’s R, G,

and B values being XORed with a different prime value to prevent the pattern from

being traced. It is crucial that the initial random seed for α is random in nature to be

unpredictable to ensure the uniqueness of the prime store and prevent differential

file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23second
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23third
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23fourth
file:///C:/Users/nehum/AppData/Local/Microsoft/Windows/INetCache/IE/815W0540/NIS_Final_22Apr%5b1%5d.docx%23fivth

 130

attacks. The values in 𝐼 = {𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑄} are converted to binary to create 8-bit

sequences and transform into a new set of values D = {𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑄} that have

no correlation with the previous bytes.

2.2. Encryption

In the Rubik’s Cube Algorithm, the encryption happens as follows. Consider an

image I0 of the size M×N. Image I0 basically represents the pixel values in the matrix

form of the image. Two keys KR and KC are randomly generated of length M and N,

respectively, as discussed in Method 2.1 and stored in a vector format, KR[i] and

KC[i]. Both take random values from 0 to 2𝛼−1. For every row i of the image I0, the

sum of all the elements in the row i that is denoted by (i) is computed using the

equation

(1) 𝛼(𝑖) = ∑ 𝐼0(𝑖, 𝑗) , where 𝑖 = 1, 2, 3, 4, … , 𝑀.𝑗=1

Then, modulo 2 of (i) is computed which is denoted by M𝛼(𝑖). Row i is then left,

right, or circular shifted by KR(i) positions, i.e., the image pixels are moved KR(i)

positions left or right based on whether M𝛼(𝑖) =0. If M(𝑖) =0 then perform right

circular shift, else – left circular shift. Similarly, for every column j of the image I0,

the sum of all the elements in the column j that is denoted as β(j) is computed using

(2) β(𝑗) = ∑ 𝐼0(𝑖, 𝑗) , where 𝑗 = 1, 2, 3, 4, … , 𝑁𝑖=1 .
Then, modulo 2 of β(j) which is denoted by Mβ(j). Column j is then either down,

up, or circular shifted by KC(i) positions based on whether Mβ(j) = 0 or not if

Mβ(j) =0 then perform an up circular shift, else – a down circular shift.

After executing the two steps mentioned above, a scrambled image is formed

which is denoted as ISCR. Then using vector KC, the XOR operator is applied to each

row of the scrambled image ISCR like below:

(3) 𝐼1(2𝑖 − 1, 𝑗) = 𝐼SCR(2𝑖 − 1, 𝑗) ⊕ KC(𝑗),
 𝐼1(2𝑖, 𝑗) = 𝐼SCR(2𝑖, 𝑗) ⊕ rot180(KC(𝑗)).

Similarly for Vector KR the similar operations are performed as follows:

(4) 𝐼ENC(𝑖, 2𝑗 − 1) = 𝐼SCR(𝑖, 2𝑗 − 1) ⊕ KR(𝑗),
𝐼ENC(𝑖, 2𝑗) = 𝐼SCR(𝑖, 2𝑗) ⊕ rot180 (KR(𝑗)).

If ITER=ITERmax, then the image that is encrypted (denoted as IENC) is created

and the encryption process ends here, if ITER<ITERmax, the algorithm goes back to

the first step. Vectors KR, KC and the max iteration number ITERmax are secret keys

in the proposed encryption algorithm.

2.3. Decryption

Decryption of an image using Rubik’s Cube Algorithm is basically doing the reverse

process of encrypting an image using the same algorithm which includes inversing

all the operations.

The encrypted picture IENC, the secret keys, KR, KC, and ITERmax are used to

reconstruct the decrypted image, I0. Initially the ITER variable is set to 0 and then

incremented until it reaches ITERmax. The encrypted image IENC’s vector KR and each

column are subjected to the following bitwise XOR operation:

(5) 𝐼1(𝑖, 2𝑗 − 1) = 𝐼ENC(𝑖, 2𝑗 − 1) ⊕ KR(𝑗),
𝐼1(𝑖, 2𝑗) = 𝐼ENC(𝑖, 2𝑗) ⊕ rot180(KR(𝑗)).

file:///C:/Users/shria/Downloads/CIT_RCAlgoWithEq.docx%23met21

 131

Fig. 2. Rubik’s Cube Algorithm

Next, every row in image I1 is subjected to the bitwise XOR operator using the

KC vector.

(6) 𝐼SCR(2𝑖 − 1, 𝑗) = 𝐼1(2𝑖 − 1, 𝑗) ⊕ KC(𝑗),
𝐼SCR(2𝑖, 𝑗) = 𝐼1(2𝑖, 𝑗) ⊕ rot180(KC(𝑗)).

 132

For every column j of the scrambled image ISCR, the total of all the elements in

each column of the scrambled picture ISCR is determined and indicated as

(7) SCR(𝑗) = 𝑀𝑖 = 𝐼SCR(𝑖, 𝑗) , where 𝑗 = 1, 2, … , 𝑁.
Modulo 2 of SCR(j), indicated by MSCR(j) and column j is circularly shifted

downward or upward by KC(i) as follows – up-circular shift if MSCR(j) = 0; else, down-

circular shift ISCR for each row i of the jumbled image. All the components in row I

are added and indicated by

(8) SCR(𝑖) = 𝑁𝑗 = 𝐼SCR(𝑖, 𝑗) , where 𝑖 = 1, 2, … , 𝑀.

Modulo 2 of SCR(j) is again determined and denoted by MSCR(j). Row I is then

circularly moved to the left or right by KR(i) as right circular shift if MSCR(j)=0; else,

left circular shift. Image IENC is decrypted and the decryption process is complete if

ITER=ITERmax; otherwise, the algorithm loops back to the first step. Fig. 2 provides

a detailed algorithm.

3. Proposed methodology

3.1. Communication of dimensions

In, this proposed method both the communicating nodes (i.e., Alice and Bob)

communicate through each other via the Key Distribution Centre (KDC). At each

stage of image sharing, i.e., for every image, the sender (i.e., Alice) will communicate

the dimensions of the corresponding image with the KDC. According to the received

dimensions, the KDC generates the key and sends it to Alice. This message is

encrypted with the master key that is assumed to be previously shared between the

KDC and Alice. For example, an image of dimensions M×N is being shared from

Alice to Bob, KR and KC are the keys generated for the rows and columns of the image

to be shared respectively using Rubik’s Cube Algorithm. KA and KB are the keys that

are previously shared by Alice and Bob with the KDC respectively.

The encryption and decryption process of the proposed methodology follows

the same algorithm as the original Rubik’s cube Method 2 for image encryption.

However, in this approach, the row-wise and column-wise keys KR and KC are

generated by the KDC using the dimensions M×N that are communicated for every

image transmission. This eliminates the need to generate these keys at the sender and

receiver ends, thus reducing computational overhead and ensuring the keys are

securely managed. Fig. 4 presents the algorithm for the encryption process of this

method.

The challenge of implementing this method is that for every image that is to be

shared by the node, a contact to the KDC must be made, which leads to a

communication overhead between KDC and the corresponding node, which can be

resolved using Method 3.2 by compromising the quality as well as the dimensions of

the image and by Method 3.3 through the usage of a single session key. Fig. 5

demonstrates the application of communicating dimensions to the KDC and the

subsequent use of those keys to encrypt an image. The different stages of the

encryption process such as permutation and diffusion is depicted here.

 133

3.1.1. Block-diagram

In Fig. 3, Alice sends a request to the KDC for a key to protect the image that is being

sent to Bob. The request includes IDA, which is the identifier of Alice (e.g., its IP

address or network address) and IDB, which is the identifier of Bob so that the KDC

knows that Alice wants to speak to Bob. This message also consists of the dimensions

of the image that is to be sent.

(1) Alice KDC: IDA || IDB|| Dimensions ||𝑁1 .
The KDC responds back to Alice with a message that is encrypted using a key

that has been shared previously only by the KDC and Alice (i.e., KA). This message

includes KR and KC that KDC generated using the Rubik’s cube algorithm according

to the dimensions received in the previous transaction which Alice uses to encrypt

the image using Rubik’s Cube Algorithm. The other components in the message are

Another part of this message, which is intended for Bob, is encrypted using KB,
which is only shared by the KDC and Bob. The components in this message are IDA,

KR, and KC. Keys KR and KC are used by B to decrypt the message sent by Alice.

(2) KDC Alice: 𝐸[KA, [KR || KC || IDB || 𝑁1 || 𝐸[KB, [KR || KC || IDA]]]
Alice sends the message that is sent by KDC to Bob

(3) Alice Bob: 𝐸(KB, [KR || KC || IDA])

Bob acknowledges the message received by Alice by sending a message encrypted

with KR and KC and a nonce N2

(4) Bob Alice: 𝐸([KR || KC], 𝑁2)

Alice then applies a function on N2 and sends it to Bob for confirmation.

(5) Alice Bob : 𝐸([KR || KC], 𝑓(𝑁2))

Fig. 3. Block diagram of Rubik’s Cube Algorithm using KDC with communication of dimensions

 134

3.2. Standardization

A new issue arises when using KDC, Rubik’s cube generates keys based on the image

and the number of pixels it contains, but the KDC does not have the image and does

not know what size keys to generate. To address this, standardization can be used to

transform the image into a standardized format with well-defined characteristics,

such as resizing the image to a standard size, converting it to a specific colour space,

normalizing the intensity values of the pixels, and removing noise or artefacts.

Fig. 4. Rubik’s Cube Algorithm using KDC by standardization of images

This process creates a scrambled image, which is then encrypted using a

maximum number of iterations (ITERmax) and the secret keys KR and KC. The

decryption process involves applying bitwise XOR operations to the KR and KC

 135

vectors and to each row and column of the encrypted image IENC, using a similar set

of formulas as the encryption process. The decrypted image Io is recovered from the

encrypted image IENC, using the secret keys KR and KC and the maximum number of

iterations ITERmax. The use of circular shifting and bitwise XOR operations creates a

secure encryption algorithm that can be made more secure by increasing the

maximum number of iterations, though this comes at the cost of reduced processing

speed. Overall, this encryption algorithm can be used to secure images sent between

two communicating nodes.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Permutation and diffusion stages for various images: Jetplane-original (a); Jet plane-confused

(b); Jet plane-encrypted (c); Baboon-original (d); Baboon-confused (e); Baboon-encrypted (f); Lena-

original (g); Lena-confused (h); Lena-encrypted (i)

In terms of security, standardizing the image size and its pixels helps to ensure

that the same level of security is applied to every image encryption. This is important

because different image sizes and pixel values can result in different levels of

security, which can make the encryption vulnerable to attacks. By standardizing the

image size and pixel values, we can ensure that the same level of security is applied

uniformly to all image encryptions. The significance of this method is that it

simplifies the key distribution process and ensures that the encryption is uniformly

secure for all images, which ultimately results in a more efficient and secure network

communication. This method can be particularly useful in large-scale networks where

a large number of nodes require cryptographic keys, as it can reduce the

computational overhead and increase the overall security of the network.

 136

Fig. 6. Block-diagram of Rubik’s Cube Algorithm using KDC by standardization of images

Fig. 7. Rubik’s Cube Algorithm using KDC by standardization of images

In Fig. 6, standard dimensions are set for all the images to be sent securely, node

A sends the 𝐼A and 𝐼B to the KDC. These standard dimensions are used for every

 137

image sent during that particular session. Moreover, the dimensions vary according

to the application it is being used in. The KDC verifies the authentication credentials

of nodes A and B and generates a new set of keys (KR and KC) for each row and

column of the standardized image. The KDC encrypts (KR and KC) generated using

the KA. The KDC sends the encrypted keys to the node A and node A decrypts the

keys using KA and communicates the decrypted keys (KR and KC) to node B using

KB. Then, node B decrypts the keys using KB. The image to be sent is standardized

account to the set standard. Node A then encrypts the standardized image to be sent

to node B using KR and KC. The encrypted image can now be used for secure

communication between the nodes. Node B can now decrypt the image sent using KR

and KC. The entire algorithm for this logic is given in Fig. 7. Fig. 8 depicts the initial

standardization of the image and the subsequent utilization of the keys having

standard dimensions from the KDC for the encryption process. The different stages

of the process such as standardization, permutation, and diffusion are depicted here.

(a) (b) (c) (d)

Fig. 8. Permutation and diffusion stages for various images: Original image (a);

Standardized image (b); Confused image (c); Encrypted image (d)

3.3. Single session key

The proposed methodology for single session keys has several advantages. One of

the key benefits is that it reduces communication costs. This is achieved by replacing

the use of multiple dimension-dependent keys, that is, the row-wise and column-wise

keys KR and KC of M and N bits, respectively, with a single key Ks of length 128 bits.

This single key is received from the KDC and used cyclically. The key iteration is

 138

varied by applying a set of operations to the key while traversing it to accommodate

varying image dimensions. Fig. 9 shows the block diagram of this proposal. Fig. 10

presents the algorithm for the encryption process of the single session key approach.

Fig. 9. Block-diagram of Rubik’s Cube Algorithm with KDC using single session key

Fig. 10. Algorithm for single session key approach

 139

The methodology of using a single key also solves the problem of having to

generate a different key for every image transmission. Additionally, this approach

provides an optimal balance between security, image quality, and communication

cost. The use of a single key reduces communication overheads and streamlines the

key management process. Fig. 11 demonstrates the implementation of the single

session key approach to acquire keys from the KDC for the encryption of images.

The different stages of the encryption process such as permutation and diffusion is

depicted here. As shown in Fig. 9, Sender node initially contacts KDC to request for

session key for transmission, upon which the KDC provides the key Ks as a message

where one portion is encrypted using sender node’s master key, and remaining

portion with receiver node’s master key so only these two parties gain access to the

session key Ks.

 (a) (b) (c)

 (d) (e) (f)

(g) (h) (i)

Fig. 11. Permutation and diffusion stages for various images: Jet plane-original (a);

Jet plane-confused (b); Jet plane-encrypted (c); Baboon-original (d); Baboon-confused (e);

Baboon-encrypted (f); Lena-original (g); Lena-confused (h); Lena-encrypted (i)

 140

4. Security analysis

The proposed scheme has been analyzed in terms of security using several methods

such as visual test, key sensitivity analysis, key space analysis, histogram analysis,

and speed analysis.

4.1. Visual test

The effectiveness and security of the encryption scheme is initially analyzed by

observing the differences and similarities between the plain image and the encrypted

image. An encryption scheme is superior if the degree by which the encrypted image

differs from the plain image is very high. For the three proposed methods, it is

observed that the encrypted image and the plain image vary by a great extent.

4.2. Key space analysis

The key space refers to the total number of possible keys that can be used in an

encryption algorithm. A larger key space generally implies additional security in the

encryption algorithm. The proposed three methods use different key sizes catering to

the needs of the algorithm.

4.2.1. Communication of dimensions of the image to KDC

Two keys are employed in this scheme namely, KR and KC. The length of KR and KC

are dependent on the dimensions of the image. For an algorithm to be resistant to

brute-force attacks, the key space must be greater than 2100. For example, if the

image is of size 512×1024, an 8-bit key value is generated by the KDC for every

pixel. For the given image, KR generated would be of 4096 bits and KC generated

would be of 8192 bits. This results in the key-space of 212,288 keys. This is an

extremely larger number and is hence impossible to perform a brute-force attack for

an image encrypted using this method. Even for an image of size 256×256, the key

space is 2512, which is greater than 2100, which satisfies the criteria required to be

resistant to brute-force attacks.

4.2.2. Standardization of dimensions of the image

The key space for this method is dependent on the standard dimensions used by the

algorithm. For an algorithm to be resistant to brute-force attacks, the key space must

be greater than 2100. Consider the example of 500×1000 as the standard dimensions

of the image. For the given dimensions, the KDC generates KR and KC, which would

be valid for an entire session. Thus, the KDC would generate a 4000-bit KR and

8000-bit KC. This results in the key-space of 212,000 keys. Again, this is an extremely

larger number and is hence impossible to perform a brute-force attack for an image

encrypted using this method. Even with 150×150 as the standard dimensions, the key

space is 2300, which is greater than 2100, which satisfies the criteria required to be

resistant to brute-force attacks.

 141

4.2.3. Encryption using a single session key

In this scheme, a single session key Ks is used for the encryption process. Ks is a set

of sixteen 8-bit values. Hence, resulting in a single 128-bit key. The 128-bit key used

in this scheme is irrespective of the dimensions of the image. The key space is hence

2128, which is approximately 340 undecillions. With current technology, it is

estimated that it would take billions of years to exhaustively search the entire key

space. Therefore, a 128-bit key is sufficient in preventing a brute-force attack.

4.3. Key sensitivity analysis

Key sensitivity analysis is a technique used to determine the impact of changes to a

key on the output of a mathematical or statistical model. Here, we will observe the

degree of difference in the encrypted image with respect to changes made in the key.

In key sensitivity analysis, the model is run multiple times with different values for

one or more input variables, while keeping all other variables constant. The results

are then analyzed to determine how changes to each key affect the output of the

model. Differential attacks are a type of cryptographic attack that exploit patterns in

the differences between pairs of plaintexts and the corresponding cipher texts

generated by a cipher. Firstly, the correct key is used for the encryption and

decryption of the sample image. Fig. 12 shows the plain, encrypted and decrypted

image using the correct key.

 (a) (b) (c)

Fig. 12. Encryption and decryption: Plain image (a); Encrypted image (b); Decrypted image (c)

Secondly, a slight change in key values has been considered for the encryption

and decryption process. Here, we consider a one-bit difference from the original key.

Fig. 13 shows the images obtained after performing encryption using the correct and

modified keys. Thirdly, the absolute difference in the encrypted image using the

correct key and modified key is shown in Fig. 14.

From the analysis, we can conclude that the keys are highly sensitive and are

hence resistant to differential attacks. Only the correct key can decrypt the encrypted

image. The key sensitivity of the proposed scheme of communication of dimensions

of the plain image and the proposed scheme of standardizing plain image dimensions

is extremely high. The encryption key is a symmetric key; it is used only once and is

truly random. There is no pattern whatsoever observed here. The key sensitivity

analysis for the proposed scheme using a single session key is depicted in

Figs 12-14. Further, the absolute intensity difference image in Fig. 14 shows that

 142

there is significant difference in the encrypted image for a one-bit variation in the

single session key. Hence, the proposed scheme is said to be resistant to differential

attacks.

4.4. Histogram analysis

For ensuring security, the input image and the encrypted image must not be

statistically similar. Utilization of a histogram enables us to view the distribution of

the image’s pixel values. A more secure algorithm involves uniform distribution of

pixel frequencies to provide adequate protection against statistical attacks. The red,

green and blue color planes for the plain image and the encrypted image obtained

using the different proposed schemes are shown in Figs 15-17. The variation in RGB

values in the encrypted image is low as shown in Fig. 15, Fig. 16 and Fig. 17. The

red, blue and green planes have been evaluated using histograms. From the

experimental results, we can safely conclude that the given algorithm is resistant to

statistical attacks.

(a)

(b)

Fig. 15. Histogram analysis for encryption using communication of dimensions – red, green, and blue

color planes of image: Plain image (a); Encrypted image (b)

Fig. 13. Comparison of encrypted imaged : Plain

image encrypted using correct key (a); Plain image

encrypted using modified key (b)

Fig. 14. Absolute intensity

differences of encrypted

images using correct and

modified keys

 143

5. Conclusions

A secure peer to peer image sharing using Rubik’s cube algorithm and KDC has been

proposed in this paper. Use of KDC for key generation eliminates the overhead of

key generation at the communicating nodes. Three different methods proposed use

the Rubik’s algorithm along with KDC, which can be used for different applications

as required. Our main proposed method which uses single session key for image

sharing can be used in cloud-based storages and also when using thin clients as well

as social media platforms such as WhatsApp, Instagram because it can reduce both

communication and processing overhead. The security analysis conducted on our

proposed method proves that these methods have high security as well as low

computation suitable for most of the applications. Overall, the proposed work helps

in increasing the security of peer-to-peer image sharing using Rubik’s cube algorithm

along with KDC

R e f e r e n c e s

1. Earthweb. How Much Data is Created Every Day? 2023 (Online).

https://earthweb.com/how-much-data-is-created-every-day/
2. M u n e, R., S. A. B h u r a. An Analysis of Heterogeneous Data with Extreme Learning via

Unsupervised Multiple Kernels. – In: Proc. of 2nd International Conference on Data,

Engineering and Applications (IDEA’20), IEEE, 2020, pp. 1-7,

3. M h a t r e, M., H. K a s h i d, T. J a i n, P. C h a v a n. BCPIS: Blockchain-Based Counterfeit Product

Identification System. – Journal of Applied Security Research, 2022, pp. 1-26 (Online).

4. M e h t a, K., G. D h i n g r a, R. M a n g r u l k a r. Enhancing Multimedia Security Using Shortest

Weight First Algorithm and Symmetric Cryptography. – Journal of Applied Security Research,

2022, pp. 1-24. DOI: 10.1080/19361610.2022.2157193.

Fig. 16. Histogram analysis for encryption

using standardization of dimensions – red,

green and blue color planes of image: Plain

image (a); Encrypted image (b)

Fig. 17. Histogram analysis for encryption

using a single session key – red, green and

blue color planes of image: Plain image (a);
Encrypted image (b)

 144

5. S a w a n t, V., A. S o l k a r, R. M a n g r u l k a r. Modified Symmetric Image Encryption Approach

Based on Mixed Column and Substitution Box. – Journal of Applied Security Research, 2022,

pp. 1-34.

6. V i d h y a, R., M. B r i n d h a. A Chaos-Based Image Encryption Algorithm Using Rubik’s Cube

and Prime Factorization Process (CIERPF). – Journal of King Saud University – Computer

and Information Sciences, Vol. 34, 2022, No 5, pp. 2000-2016.

DOI: 10.1016/j.jksuci.2019.12.014.

7. K u m a r, A., M. R a n i. A Novel Chaotic Encryption Scheme for Images. – Chaos, Solitons &

Fractals, Vol. 28, October 2006, No 1, pp. 67-76. DOI: 10.1016/j.chaos.2005.05.022.

8. Z h a o, Y., R. M e n g, Y. Z h a n g, Q. Y a n g. Image Encryption Algorithm Based on a New

Chaotic System with Rubik’s Cube Transform and Brownian Motion Model. – Optik,

Vol. 273, 2023, 170342.

9. D e s h p a n d e, K., J. G i r k a r, R. M a n g r u l k a r. Security Enhancement and Analysis of Images

Using a Novel Sudoku-Based Encryption Algorithm. – Journal of Information and

Telecommunication, 2023, pp. 1-34

10. H e l m y, M., E. M. E l-R a b a i e, I. M. E l d o k a n y et al. 3D Image Encryption Based on Rubik’s

Cube and RC6 Algorithm. – 3D Res., Vol. 8, 2017, No 38.

11. G o m a t h i, T., B. L. S. K u m a r. Multistage Image Encryption Using Rubik’s Cube for Secured

Image Transmission. – International Journal of Advanced Research in Computer Science,

(S.l.), Vol. 6, January 2017, No 6, p. 54-58. ISSN 0976-5697.

12. I o n e s c u, V. M., A. -V. D i a c o n u. Rubik’s Cube Principle-Based Image Encryption

Algorithm Implementation on Mobile Devices. – In: Proc. of 7th International Conference on

Electronics, Computers and Artificial Intelligence (ECAI’2015), 2015, pp. P-31-P-34.

DOI: 10.1109/ECAI.2015.7301247.

13. A b i t h a, K. A., P. K. B h a r a t h a n. Secure Communication Based on Rubik’s Cube Algorithm

and Chaotic Baker Map. – Procedia Technology, 2016.

14. A t t k a n, A., V. R a n g a, P. A h l a w a t. A Rubik’s Cube Cryptosystem Based Authentication and

Session Key Generation Model Driven in Blockchain Environment for IoT Security. – ACM

Transactions on Internet of Things, 2023.

15. J i n, J., S. P a r k. Key Generation and Management Method Using AI Generated Rubik’s Cube

States. – In: Proc. of International Conference on Information Networking (ICOIN’2023),

IEEE, 2023.

16. C h u m a n, T., W. S i r i c h o t e d u m r o n g, H. K i y a. Encryption-Then-Compression Systems

Using Grayscale-Based Image Encryption for JPEG Images. – IEEE Transactions on

Information Forensics and Security, 1-1, 2018. DOI:10.1109/tifs.2018.2881677.

17. A l s h e h r i, A. A., M. S. W o o n g. Cryptographic Algorithm for Image Encryption Based

on Chaotic Map. – Mathematical Problems in Engineering, Vol. 2013, February 2013,

Article ID 848392. 10 p. DOI: 10.1155/2013/848392.

Received: 13.06.2023; Accepted: 29 .08.2023

	Access Instruction 960
	10.2478_cait-2023-0029

