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Abstract: Clustering is the process of grouping the data based on their similar
properties. Meanwhile, it is the categorization of a set of data into similar groups
(clusters), and the elements in each cluster share similarities, where the similarity
between elements in the same cluster must be smaller enough to the similarity
between elements of different clusters. Hence, this similarity can be considered
as a distance measure. One of the most popular clustering algorithms is K-means,
where distance is measured between every point of the dataset and centroids of
clusters to find similar data objects and assign them to the nearest cluster. Further,
there are a series of distance metrics that can be applied to calculate point-to-point
distances. In this research, the K-means clustering algorithm is evaluated with
three different mathematical metrics in terms of execution time with different
datasets and different numbers of clusters. The results indicate that the implemen-
tation of Manhattan distance measure metrics achieves the best results in most
cases. These results also demonstrate that distance metrics can affect the execu-
tion time and the number of clusters created by the K-means algorithm.

Keywords: K-means clustering; distance metrics; Euclidean distance; Manhattan
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1 Introduction

Clustering is the process of grouping data based on their same properties. All the elements in each cluster
should be similar [1]. The types of clustering include data mining algorithmic clustering, dimension
reduction, parallel clustering, and MapReduce-based clustering [2]. Meanwhile, partitioned clustering is a
type of data mining algorithmic clustering integrating different algorithms like K-means, K-modes,
K-medoids, PAM, CLARA, CLARANS, and FCM [3].
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One of the widely used algorithms for clustering implementation is the K-means clustering algorithm
[4], whose usage is very common due to the best performance for big datasets [4,5]. In the standard
K-means algorithm, K points are firstly selected as initial centroids, where each centroid represents a
cluster. Then all objects of the dataset are assigned to the centroids with the minimum distances. After the
allocation of all data items, centroids are recalculated until no further objects change their cluster [6].
Generally, Euclidean distance is utilized for this purpose in most cases. However, the allocation may take
maximum because it needs to recalculate the distance mathematical equation during each iteration.
Therefore, many mathematical metrics are proposed to improve the distance calculation [7].

Mathematical distance measure metrics play an essential role in improving the result of the K-means
algorithm. Thus, three distance metrics, i.e., Euclidean distance, Manhattan distance, and Minkowski
distance, are implemented in this study. Besides, the execution time with different cluster numbers is
evaluated on different datasets, where 100000, 200000, 300000, 400000 and 500000 2D points are
randomly selected as datasets.

2 Literature Review

Many researchers have improved the efficiency and the performance of the K-means clustering
algorithm, including the accuracy, the quality of clusters, and the running time of the K-means algorithm
[8,9,10]. Kaur et al. [11] presented an improved variant of standard K-means, which provided the image
compression with less running time and more efficiency. Dalal et al. [12] introduced an enhanced version
of the K-means algorithm to better select starting points so that to meet an improved local minimum.
Over the complete dataset, the number of repetitions also decreased. Two things can influence the idea
that was dependent upon the best choice of initial centroids. The first one is the novel iterative method,
and the second one is optimization formulation. This technique may be implemented on a lot of
clustering problems. The technique was also capable of working with many other data mining techniques
to obtain the best clustering results. To evaluate the improved algorithm, different experiments were
performed on different datasets. As compared to the standard K-means algorithm, the iterations of the
proposed K-mean clustering algorithm were fewer to the best performance.

To overcome the drawbacks of standard the K-means clustering algorithm, Gupta et al. [13] presented an
improved algorithm without specifying the number of centroids.

There are different clustering types of data mining algorithms like density-based clustering algorithms,
hierarchical-based clustering algorithms, partitioning-based clustering algorithms, grid-based clustering
algorithms, and model-based clustering algorithms [14]. In partition-based clustering, one of the famous
algorithms is the K-means algorithm [14], which first generates a K number of partitions representing the
number of groups and then conducts the iterative allocation process of data elements to the group [6].

Bora et al. proposed an experimental study in Matlab to cluster the iris and wine datasets with different
distance measures and observed the variation of the performances [15]. Loohach et al. implemented the
K-means clustering algorithm with Euclidean distance as well as Manhattan distance metrics and
compared the result in terms of the number of iterations. Their results showed that the number of
iterations could be affected by the implementation of different distance metrics [16]. Sajana et al. [3]
focused on a keen study of different clustering algorithms, highlighting the characteristics of big data
techniques and an overview of various types of clustering. Rathore et al. [17] introduced a new technique
to implement a K-means clustering algorithm instead of traditional K-means. First, the quality of clusters
was improved by removing outlier elements in a dataset; second, the dataset was split into clusters by
using a bi-part method. The results were compared with the traditional K-means algorithm and showed
better accuracy by removing the de-efficiency.
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3 Distance Metrics

To find a point-to-point distance between elements and centroid, different distance metrics that play an
important role in K-means clustering are measured to assign these elements to related clusters (i.e.,
centroids). Three distance metrics are implemented and discussed as follows.

3.1 Euclidean Distance

Euclidean distance or Euclidean metric is the familiar and straightforward line between two elements or
the minimum distance between two objects [18], which is the clearest way of representing the distance
between two points. If points (x1, y1) and (x2, y2) are in 2-dimensional space, then the Euclidean
distance d between them is

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x1ð Þ2 þ y2 � y1ð Þ2

q
(1)

3.2 Manhattan Distance

In the Manhattan distance function [15], the distance between two points is the sum of the absolute
differences of their Cartesian coordinates. Simply it is the sum of the difference between the
x-coordinates and y-coordinates. Thus, the Manhattan distance d x; yð Þ can be defined as

d x; yð Þ ¼
Xk

i¼1
xi � yij j (2)

3.3 Minkowski Distance

Minkowski distance [19] is described as a generalization of two matrices: Euclidean distance metrics and
Manhattan distance metric. The formula to calculate Minkowski distance D x; yð Þ is given as follows:

D x; yð Þ ¼
Xk

i¼1
xi � yij jð Þq

� �1=q
(3)

4 Methodology

We compared execution time with different numbers of clusters on different datasets. Datasets are
randomly selected such as 100000, 200000, 300000, 400000, and 500000 in 2D points. Different distance
metrics are implemented to measure the distance between data objects. In this paper, the K-means
algorithm is employed by using different distance metrics, whose mechanisms are summarized as follows.

4.1 Euclidean Distance Algorithm

In random 2D dataset points:

a. Select K number of clusters.
b. Select randomly initial centroid points.
c. Commute the distance with the Euclidean distance metric of each point from selected cluster centers.

Steps of Euclidean distance metric:

I. Dist1 = [ (points - centroid)2 ]

II. Dist = math.sqrt(sum(Dist1))

III. return Dist

d. Grouping based on the minimum distance.
e. If no data points need to be moved, then stop; otherwise, repeat Steps c & d.
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4.2 Manhattan Distance Algorithm

In random 2D dataset points:

a. Select K number of clusters.
b. Select randomly initial centroid points.
c. Commute the distance with the Manhattan distance metric of each point from selected cluster centers.

Steps of Manhattan distance metric:

I. Dist1 = [points – centroid]

II. Dist = sum(abs(Dist1))

III. return Dist

d. Grouping based on minimum distance.
e. If no data points need to be moved, then stop; otherwise, repeat Steps c & d.

4.3 Minkowski Distance Algorithm

In random 2D dataset points:

a. Select K number of clusters.
b. Select randomly initial centroid points.
c. Commute the distance with the Minkowski distance metric of each point from selected cluster centers.

Steps of Minkowski distance metric:

I. Dist1 = [(points - centroid)n]1/n

II. Dist = sum(abs(Dist1))

III. return Dist

d. Grouping based on minimum distance.
e. If no data points need to be moved, then stop; otherwise, repeat Steps c & d.

5 Experimental Results

In the experiments, Spyder 3.2.8 was implemented, which is a scientific python development
environment and powerful python IDE. All experiments were conducted on a machine consisting of an
Intel (R) Core (TM) i5-5300 CPU @ 2.30 GHz with 8 GB RAM. The results were evaluated on different
numbers of clusters, such as 4, 6, 8, 10, 12, 14, and 16, using five different datasets. To achieve perfect
results, many runs were carried out for each use case, and the running times were measured in milliseconds.

In Fig. 1, the running time is compared with three different mathematical methods on four clusters.
Different datasets were split into four clusters. Running time is shown along the y-axis in milliseconds,
and the compared different datasets of three different distance metrics are shown along the x-axis.

In Fig. 2, compared the running time of the K-means algorithm with three different distance metrics like
Euclidean, Manhattan, and Minkowski. It is observed that Euclidean and Minkowski’s methods take the
same time at 500,000 dataset points. But in fewer points, the Euclidean distance metric performs better
results as compared to other metrics.

In Figs. 3–7, the running time is compared with three different distance metrics, where different sizes of
datasets were splits into 8, 10, 12, 14, and 16 clusters, respectively. Running time is shown along the y-axis in
milliseconds, and the compared different datasets of three different distance metrics are shown along the x-axis.
It can be seen from experiments that Manhattan Distance performs better for 4, 8, 12, and 14 clusters. Euclidean
Distance shows better for 6 and 16 clusters, while Minkowski Distance performs better only for 10 clusters.
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Figure 3: Eight Clusters, Running time of k-means algorithm with three different distance metrics
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Figure 1: Four Clusters, Running time of K-means algorithm with three different distance metrics
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Figure 2: Six Clusters, Running time of k-means algorithm with three different distance metrics
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Figure 5: Twelve Clusters, Running time of k-means algorithm with three different distance metrics
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Figure 4: Ten Clusters, Running time of k-means algorithm with three different distance metrics
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Figure 6: Fourteen Clusters, Running time of k-means algorithm with three different mathematical models
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6 Conclusions

One of the most popular clustering algorithms is K-means, where different distance metrics are used to
find similar data objects. Distance is measured between every point of the dataset and centroids to assign the
nearest cluster. In the experiments, the performances of three different metrics (Minkowski Distance,
Manhattan Distance, and Euclidean Distance) were measured and compared in terms of execution time
with different datasets and different numbers of clusters, i.e., 4, 6, 8, 10, 12, 14, and 16 clusters. It can be
seen from experiments that Manhattan Distance performs better for 4, 8, 12, and 14 clusters. Euclidean
Distance shows better for 6 and 16 clusters, while Minkowski Distance performs better only for
10 clusters. Overall Manhattan Distance performs better result. In future work, we will try to extend our
approach to another partitioned-based clustering algorithm like K-Medoids, CLARA, and CLARANS.
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