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Abstract

In this note we introduce an alternative definition of Property T for
C∗-algebras based on the spectrum of a C∗-algebra. We show that a
group G has Property T if and only if C∗

r (G) has Property T. In addition,
we introduce and investigate relative Property T for C∗-algebras.
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1 Introduction

There exist several equivalent statements of Property T for groups. Various
authors have tried to extend these definitions from groups to C∗-algebras [1, 4,
6]. The original definition of Property T for C∗-algebras introduced by Bekka
in [1] has deservedly received the most attention [2, 3, 5, 7]. However, a slightly
stronger definition of Property T given by Leung and Ng seems to be more
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fruitful. In this note we introduce an alternative definition of Property T for
C∗-algebras using the spectrum of a C∗-algebra. Our definition is inspired by
a similar definition for groups. In Section 2, we give the definition of Property
T and show that a discrete group G has Property T if and only if its reduced
group C∗-algebra C∗

r (G) has Property T.
In Section 3, we define relative Property T. We concentrate our analysis

on Property T relative to the set of finite dimensional Hilbert bimodules.

2 Property T

Let G be a locally compact group and Ĝ be the set of equivalence classes of
irreducible unitary representations of G. Then we know that G has Property
T if and only if every finite dimensional irreducible representation of G is
isolated in Ĝ. Let A be a C∗-algebra and Â be the set equivalence classes of
irreducible representations of A. Recall that Â is endowed with the pull-back
topology from Prim (A). We introduce the following definition of Property T
for C∗-algebras.

Definition 1. Let A be a unital C∗-algebra. We say that A has Property T if
every finite dimensional irreducible representation of A is isolated in Â.

The above definition is similar to the definition proposed by Pavlov and
Troitsky in [6]. However, we believe that our definition is more appropriate
in at least one important case. In particular, C(X) has Property T if and
only if X is finite. This is a natural result as amenability and Property T
traditionally only coincide in finite dimensional cases. In general, any finite
dimensional C∗-algebra has Property T.

Let G be a discrete group. Let C∗(G) denote the group C∗-algebra and
C∗

r (G) denote the reduced group C∗-algebra.

Theorem 2. Let G be a discrete group. Then the following statements are
equivalent:

1. G has Property T.

2. C∗(G) has Property T.

3. C∗
r (G) has Property T.

Proof. The equivalence of (1) and (2) is well known. We will show the equiv-
alence of (1) and (3). Suppose that C∗

r (G) does not have Property T. Then
there exists a finite dimensional irreducible representation π0 of C∗

r (G) and a

net {πi} in Ĉ∗
r (G) such that πi → π0. Since G is embedded in C∗

r (G) we can
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take π0 and {πi} as representations of G. We will show that π0 is in the closure

of the net {πi} in Ĝ. Let s ∈ G be in the intersection
⋂

i ker πi. Since s is
also an element of C∗

r (G), then s ∈ ker π0. Therefore,
⋂

i ker πi ⊆ ker π0. It
follows that G does not have Property T.

Conversely, suppose that G does not have Property T. Then the trivial
representation of G, 1G, is not isolated in Ĝ. Let {πi} be a net in Ĝ such that
πi → 1G. Let λG be the regular representation of G. Then λG ⊗ πi → λG.
Since λG ⊗ πi is equivalent to a multiple of λG we can extend λG ⊗ πi to a
representation of C∗

r (G). It follows λG⊗πi → λG as representations of C∗
r (G).

Therefore, C∗
r (G) does not have Property T.

Unfortunately, it remains an open question whether our definition of Prop-
erty T is equivalent to that of Bekka. We only remark that in the redundant
case when a C∗-algebra A does not have a tracial state A has Property T by
either definition.

3 Relative Property T

In this section we would like to reconsider Bekka’s definition in a more liberal
sense. Recall that a Hilbert bimodule over a C∗-algebra A is a Hilbert space H
carrying a pair of commuting representations, one of A and one of its opposite
algebra. A sequence of unit vectors {ξi} in H is called almost central vectors
if ‖ aξi − ξia ‖→ 0 for all a ∈ A.

Definition 3. Let R be a set of Hilbert bimodules of A. We say that A has
Property (T,R) if for every bimodule H in R that has a sequence of almost
central vectors there is a nonzero central vector in H.

Note that if R is the set of all Hilbert bimodules of A, then we obtain
Bekka’s original definition of Property T. We are particularly interested in the
case when R is the set of all finite dimensional Hilbert bimodules of A. We
need the following lemma for our main result.

Lemma 4. Let π be a finite dimensional representation of A and ρ be an
irreducible representation of A such that ker π ⊆ ker ρ. Then ρ is a subrepre-
sentation of π.

Proof. Since π is finite dimensional it decomposes as a finite direct sum of
irreducible representations. Then ker π =

⋂n
i=1Qi, where Qi ∈ Prim(G).

Since ker ρ is prime and
⋂
Qi ⊆ ker ρ, then Qj ⊆ ker ρ for some j. But Qj

is the kernel of a finite dimensional irreducible representation of A so Qj is a
maximal ideal. Therefore, Qj = ker ρ. Note that finite dimensional irreducible
representations of a C∗-algebra are equivalent if and only if they have the same
kernel. It follows that ρ is equivalent to a subrepresentation of π.
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Theorem 5. Let G be a discrete group and let F be the set of finite dimensional
Hilbert bimodules of C∗(G). Then C∗(G) has Property (T,F).

Proof. Let H be a finite dimensional Hilbert bimodule of C∗(G) with a se-
quence of almost central vectors {ξi}. Define a representation π of G on H by
π(s)ξ = sξs−1 for all s ∈ G and ξ ∈ H. Then π(s)ξ → 0 for all s ∈ G. So
the representation 1G is weakly contained in π. Since π is finite dimensional,
then by the above lemma 1G is a subrepresentation of π. Then there exists
a nonzero vector ξ0 ∈ H such that π(s)ξ0 = ξ0 for all s ∈ G. It follows that
sξ0 = ξ0s for all s ∈ G. Using linearity and continuity we get that aξ0 = ξ0a
for all C∗(G).

The next result is another example that the restriction to the set of fi-
nite dimensional bimodules is generally a weaker condition than the original
definition of Property T by Bekka.

Proposition 6. Let X be a compact Hausdorff space and let F be the set
of finite dimensional Hilbert bimodules of C(X). Then C(X) has Property
(T,F).

Proof. Let H be a finite dimensional Hilbert bimodule of C(X). Then H =
L2(X ×X,µ), where µ has finite support and

(fξ)(x, y) = f(x)ξ(x, y)

(ξf)(x, y) = ξ(x, y)f(y)

for all f ∈ C(X) and ξ ∈ L2(X × X,µ). Suppose that {ξi} is a sequence
of almost central vectors in L2(X × X,µ). Let (x, y) ∈ X × X such that
µ(x, y) 6= 0. If x 6= y, then there is g ∈ C(X) such that g(x) = 1 and g(y) = 0.
Since µ has finite support |g(x)ξi(x, y)− ξi(x, y)g(y)| → 0. Then ξi(x, y)→ 0.
It follows that there is a point (x0, x0) ∈ X×X such that µ(x0, x0) 6= 0. Then
the characteristic function ξ0 = χ(x0,x0) is a nonzero central vector.
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