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RESEARCH Open Access

Speech steganography using wavelet and Fourier
transforms
Siwar Rekik1,2*, Driss Guerchi2, Sid-Ahmed Selouani3 and Habib Hamam4

Abstract

A new method to secure speech communication using the discrete wavelet transforms (DWT) and the fast Fourier
transform is presented in this article. In the first phase of the hiding technique, we separate the speech
high-frequency components from the low-frequency components using the DWT. In a second phase, we exploit
the low-pass spectral proprieties of the speech spectrum to hide another secret speech signal in the low-amplitude
high-frequency regions of the cover speech signal. The proposed method allows hiding a large amount of secret
information while rendering the steganalysis more complex. Experimental results prove the efficiency of the
proposed hiding technique since the stego signals are perceptually indistinguishable from the equivalent cover
signal, while being able to recover the secret speech message with slight degradation in the quality.

Keywords: Audio steganography, Discrete wavelet transform, Fast Fourier transform, Data hiding, Speech
steganography

Introduction
One of the concerns in the field of secure communication
is the concept of information security. Today’s reality is still
showing that communication between two parties over
long distances has always been subject to interception.
Providing secure communication has driven researchers to
develop several cryptography schemes. Cryptography meth-
ods achieve security in order to make the information unin-
telligible to guarantee exclusive access for authenticated
recipients. Cryptography consists of making the signal look
garbled to unauthorized people. Thus, cryptography indi-
cates the existence of a cryptographic communication in
progress, which makes eavesdroppers suspect the existence
of valuable data. They are thus incited to intercept the
transmitted message and to attempt to decipher the secret
information. This may be seen as weakness in cryptography
schemes. In contrast to cryptography, steganography allows
secret communication by camouflaging the secret signal in
another signal (named the cover signal), to avoid suspicion.
This quality motivated the researchers to work on this
burning field to develop schemes ensuring better resistance
to hostile attackers.

The word steganography is derived from two Greek
words: Stego (means cover) and graphy (means writing).
The two combined words constitute steganography,
which means covert writing, it is the art of hiding writ-
ten communications. Several steganography techniques
were used to send message secretly during wars through
the territories of enemies. The use of steganography
dates back to ancient time where it was used by romans
and ancient Egyptians [1]. One technique according to
Greek historian Herodotus was to shave the head of a
slave, tattoo the message on the slave’s scalp, and send
him after his hair grew back. Another technique was to
write the secret message underneath the wax of a writing
tablet. A third one is to use invisible ink to write secret
messages within covert letters [2].
Many techniques have been developed for hiding secret

signals into other cover signals. Sridevi et al. [3] presented
a method for audio steganography. It consists of substitut-
ing the least significant bit (LSB) of each sample of the
cover speech signal with the secret data. While this method
is easy to implement and can be used to hide larger secret
messages, it cannot protect the hidden message from small
modifications that can happen as a result of format conver-
sion or compression. Hiding data in LSBs of audio samples
in the time domain is one of the simplest algorithms enab-
ling a very high data rate of inserted information. However,
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several steganalysis algorithms have been developed to
challenge the robustness of this method. Bender et al. [4]
have presented a technique for data hiding based on phase
coding. This method consists of substituting the phase of
the first part of an audio segment by a reference phase that
represents the data. In order to conserve the relative phase
between segments, an adjustment must be made in the
phase of the succeeding segment. The series of steps of
phase coding is as follows: (i) The original audio signal is
decomposed into smaller segments such that their length
is equal to the size of the message to be encoded; (ii) A
discrete Fourier transform (DFT) is then applied on each
segment leading to a phase matrix; (iii) Compute the differ-
ences between the phase of each pair of the consecutive
segments; (iv) Identify the phase shifts between the con-
secutive segments. Although, the absolute phases of the
segments may change, the relative phase differences be-
tween the consecutive segments must remain unchanged;
(v) Use the new phase of the first segment and the set of
original phase differences to create a new phase matrix; (vi)
Regenerate the audio signal with an inverse DFT and then
connect the audio segments together. This step is based on
the original magnitude matrix and the newly created phase
matrix. The receiver determines the length of the secret
message, then applies a DFT and extract the hidden mes-
sage from the cover signal. A distinctive characteristic of
phase coding is the low data transmission rate due to the
fact that the secret data are encoded only in the first seg-
ment of the audio signal. Controversially, any enhancement
in the length of the segment may result in shifting the
phase relations among the frequency elements of the seg-
ment, leading therefore to an easier detection of the exist-
ence of a secret message. Thus, the phase coding algorithm
is more efficient when hiding small amount of data.
Kirovski and Malvar [5] have proposed a new stegano-
graphic scheme, called Spread Spectrum (SS) coding
method. This method randomly spreads the bits of the se-
cret data message across the frequency spectrum of the
audio signal. However, in contrast to LSB coding, the SS
coding scheme spreads the secret message using a code in-
dependent from the concrete cover signal. The SS coding
technique may outperform the LSB coding and phase cod-
ing techniques by offering a good quality for medium data
transmission rates while ensuring a high level of robustness
against steganalysis. However, similarly to the LSB coding
technique, the SS method may introduce noise to the audio
file. This is presenting a weakness since it facilitates detec-
tion by steganalysis systems.
Huang and Yeo [6] have presented an information hiding

method based on echo hiding. An echo is introduced into
the discrete audio signal in order to embed secret informa-
tion. Similar to the SS coding method, echo hiding is used
to provide a better data transmission rate and higher ro-
bustness comparing to the noise-inducing techniques. To

accomplish successfully the hiding process, three funda-
mental parameters need to be changed from the original
signal: decay rate, offset (time delay), and amplitude. These
three parameters are easily defined since they are located
below the human audible threshold limit which is different
from the echo. Also, the offset is altered to characterize the
binary message to be hidden. The first and the second off-
sets represent a one (binary) and a zero (binary), respect-
ively. Shirali and Shahreza [7] present an approach for
hiding information in a speech signal. This method con-
sists of detecting the silence intervals of a speech and the
corresponding length of these intervals (number of sam-
ples) and changing them with the secret information. Hid-
ing data in silent interval of the audio samples is one of the
simplest algorithms enabling a very high data rate of
inserted information. However, this method is already well
known and several steganalysis algorithms have been
developed to defeat the robustness of this method.
Speech steganography takes advantage of the recent

advancements in speech compression and data hiding.
Speech is a low-pass signal; its intelligibility is retained
when preserving at least the first three formants of the
magnitude spectrum. In this article, we will take advan-
tage of these speech characteristics to propose an effi-
cient speech-in-speech hiding method. Our speech
steganography system consists of embedding the secret
speech parameters in the high-frequency regions of the
magnitude spectrum of the cover speech. Our aim is to
ensure that the stego signal obtained from combining
the original phase spectrum and the modified magnitude
spectrum shows similar subjective quality to the cover sig-
nal. Theoretically, the resultant stego speech is expected to
be perceptually indistinguishable from the cover speech
since the pertinent low-frequency components will remain
intact.
Potential applications of our speech hiding scheme are

reduction of speech storage and transmission overhead
in electronic voice mail applications and audio stream-
ing, speech translation, data communication secrecy,
and many other web-based applications.

Objectives
Our objective is to develop a high performance speech
steganography system. The design of such system con-
sists principally of the optimization of the following
attributes:

� The hiding capacity, defined by the amount of the
secret information (speech, text, or image) to be
hidden in the cover speech signal.

� The impact of the hiding process on the cover
speech quality. We hope to produce a stego signal
that is perceptually indistinguishable from the cover
signal.
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� The complexity of the steganography system. Our
aim is to render the steganalysis (the attempt to
discover the existence of the secret message from
the stego signal) by the opponent more complex.

� The accuracy with which the hidden message can be
recovered at the receiver. Efficient techniques are to
be developed to minimize the impact of the
compression on the stego signal.

We choose a speech signal as secret information to be
hidden in the cover speech. Since our objective in discrete
wavelet transform-fast Fourier transform (DWT-FFT)-
based hiding approach is secrecy, we propose to hide the
secret information within the high-frequency of the wavelet
components.
The rest of the article is organized as follows: in the

following section, we introduce our DWT-FFT-based ap-
proach dedicated for the steganography task. Section
“Secret speech parameterization” will describe the secret
speech analysis including the linear predictive coding
(LPC) analysis and the line spectral frequencies (LSF)
extraction procedure. In Section “Speech hiding algo-
rithm”, we proceed with the description of the used
speech hiding algorithm. The general step to retrieve the
secret speech signal is also included in this section. Then
a description of the speech signals database used for our
simulations, the parameters of our experiments, the
evaluation and discussion of the results of our proposed
DWT-FFT hiding approach are presented in Section
“Evaluation”. Finally, we conclude and suggest directions
for further research in Section “Conclusions”.

DWT-FFT-based approach
Speech DWT
The wavelet transform can be considered as transform-
ing the signal from the time domain to the wavelet do-
main. This new domain contains more complicated
basis functions called wavelets, mother wavelets, or ana-
lyzing wavelets [8]. The fundamental idea behind wave-
lets is to analyze according to scale. Any signal can then
be represented by translated and scaled versions of the
mother wavelet. Wavelet analysis is capable of enlighten-
ing aspects of data that other signal analysis techniques
are unable to perform, aspects like trends, and discon-
tinuities in higher derivatives, breakdown points, and
self-similarity.
The basic idea of DWT for one-dimensional signals is

shortly described. The wavelet analysis allows the split of
a signal into two parts, usually the high- and the low-
frequency parts. This process is called decomposition.
The edge components of the signal are largely limited to
the high-frequency part. The signal is passed through a
series of high-pass filters to analyze the high frequencies,
and it is passed through a series of low-pass filters to

analyze the low frequencies. Filters of different cutoff
frequencies are used to analyze the signal at different
resolutions [9,10].
The DWT involves choosing scales and positions

based on powers of two, the so-called dyadic scales and
positions. The mother wavelet is rescaled by powers of
two and transformed by integers. Specifically, a function
f(t)2 L2(R) (defines space of square integrable functions)
can be represented as:

f tð Þ ¼
XL
j¼1

X1
k¼�1

d j; kð Þψð2�jt � kÞ

þ
X1

k¼�1
a L; kð Þϕð2�Lt � kÞ

ð1Þ
The function ψ(t) is known as the mother wavelet, while

ϕ(t) is known as the scaling function. The set of function� ffiffiffiffiffiffiffiffi
2�L

p
ϕ 2�Lt � k
� �

;
ffiffiffiffiffiffiffi
2�j

p
ψ 2�jt � k
� �

j≤ L; j; k; L 2 Z

�
;

����
where Z is the set of integers in an orthonormal basis for
L2(R). The numbers a(L, k) are known as the approxima-
tion coefficients at scale L, while d(j, k) are identified as the
detail coefficients at scale j. The approximation and detail
coefficients can be expressed consecutively as:

a L; kð Þ ¼ 1ffiffiffiffiffi
2L

p
Z1

�1
f tð Þϕ 2�Lt � k

� �
dt ð2Þ

d j; kð Þ ¼ 1ffiffiffiffi
2j

p
Z 1

�1
f tð Þψ 2�jt � k

� �
dt ð3Þ

For a better understanding of the above coefficients,
let’s consider a projection fl(t) of the function f(t) that
provides the best approximation (in the sense of mini-
mum error energy) to f(t) at a scale l. This projection
can be constructed from the coefficients a(L, k), using
the equation:

fl tð Þ ¼
X1

k¼�1
a l; kð Þϕ 2�lt � k

� � ð4Þ

As the scale l decreases, the approximation becomes
finer, converging to f(t) as l! 0. The difference between
the approximation at scale l + 1 and that at l, fl+1(t) −
fl(t), is totally defined by the coefficients d(j, k) using
the equation of decomposition and can mathematic-
ally be expressed as follows:

flþ1 tð Þ � fl tð Þ ¼
X1

k¼�1
d l; kð Þψð2�lt � kÞ ð5Þ

These given relations, a(L, k) and {d(j, k)|j ≤ L}, are use-
ful for building the approximation at any scale. Hence,
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the wavelet transform breaks the signal up into a
coarse approximation fL(t) (given a(L, k)) and a num-
ber of layers of detail coefficients {fj+1− fj(t)|j < L}
(given by {d(j, k)|j ≤ L}). As each layer of detail is
added, the approximation at the next higher scale is
achieved. The original signal can be reconstructed
using the Inverse DWT (IDWT), following the above
procedures in the reverse order. The synthesis starts
with the approximation and detail coefficients cAj and
cDj, and then reconstructs cAj−1 by up sampling and
filtering with the reconstruction filters [11,12].

Speech Fourier transform
Since speech is processed on a time-frame basis, the
speech spectrum is evaluated using the DFT. The DFT
of a signal s(n) defined for 0 ≤ n ≤M− 1 is given by

S kð Þ ¼
XM�1

n¼0

s nð Þe�j2πkn=M; 0 ≤ k ≤ M � 1 ð6Þ

In general, S(k) is a complex function of the variable k
and can be expressed in polar coordinates as:

S kð Þ ¼ S kð Þj jejφ kð Þ ð7Þ

The sequence S(k) has the same number of elements
as s(n). However, the last M/2 elements of the DFT are
conjugates of the first M/2 elements, in inverse order.
Consequently, the magnitude spectrum |S(k)| could be

defined uniquely by the first M/2 frequency components
since it satisfies the following symmetry:

S kð Þj j ¼ S M � kð Þj j ð8Þ
This equation represents one of the DFT properties

that must be maintained when hiding a message in the
magnitudes. This feature is used in the fast Fourier
transform (FFT) algorithm to reduce the DFT computa-
tional complexity [13]. For simplicity, we will adopt in
the subsequent sections the following notations:

S ¼ fft sð Þ ð9Þ
and

s ¼ ifft Sð Þ ð10Þ
where ifft, the inverse FFT, calculates the inverse DFT.

Speech spectrum characteristics
Speech is a baseband signal with most of the pertinent
intelligibility-preserving frequency components confined to
a bandwidth of 4 and 7 kHz for narrowband and wideband
speech, respectively [14]. The distribution of the first three
speech formants represents the primary cues to the English
vowels. Most of the vowel energy is condensed below 1
kHz and decays at about −6 db/oct with frequency [15].
Figure 1 shows the wideband speech spectrum for both a li-
quid frame and an unvoiced fricative frame. In all vowels
and most of the voiced consonants, the magnitude
spectrum shows very week components at high frequencies.

Figure 1 Magnitude spectrum of (a) a voiced frame, (b) unvoiced frame.
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Even though few unvoiced fricative consonants, such as /s/,
present large magnitudes at high frequencies, the intelligi-
bility of the speech signal is negligibly affected if we do not
model accurately these frequency components [14]. On the
other hand, even for wideband unvoiced fricative conso-
nants, frequencies above 7 kHz do not contribute consider-
ably to the speech spectrum content. These two facts have
motivated us to embed a separate signal in the low ampli-
tude high-frequencies of the cover signal.

Secret speech parameterization
Many factors require the parameterization of the secret
speech message before the hiding process. Among these fac-
tors, we cite the restricted number of the hiding locations in
the narrowband cover speech. Speech parameterization
termed as speech analysis is generally used in different re-
search areas, such as automatic speech recognition and
speech coding. In speech coding, the original signal is sub-
ject to a speech analysis algorithm to extract the pertinent
speech parameters. In order to recreate a copy of the ori-
ginal signal, an inverse algorithm known as speech synthe-
sis is used. Most of the speech analysis schemes are based
on the human speech production model [15]. In this
speech production model, a sequential excitation of two fil-
ters is used to produce a speech signal, a linear prediction
(LP) filter is used to model the vocal tract, produces a
short-term correlation present in all types of speech and a
pitch filter to represent the periodicity created to the vibra-
tion of the vocal cords in voiced segments. A basic diagram
of the speech production model is shown in Figure 2. The
LPC is based on this diagram. The LPC schemes are usu-
ally used in the field of speech coding. For example in
transmission, the speech frames are represented with a
restricted number of parameters. These parameters in the
receiver side are used to reconstruct a synthetic-quality
speech signal. The speech analysis algorithm is based on
two phases: an LP analysis to obtain p LP coefficients,
ai(i = 1, . . ., p) and a pitch analysis to extract the pitch
gain g and the pitch delay d. The LP filter and the pitch fil-
ter are constructed using the LP parameters and the pitch,
respectively. In the LPC model, for the unvoiced speech
signal, an LP filter is used since there is no periodicity in
this class of speech. The pitch filter is used for the voiced

frames. Details about the speech analysis procedure are
given in [16]. The LP coefficients (LPC) must be trans-
formed to a more improved representation before any
processing, since the LPC are very susceptible to errors
and their direct quantization might generate an unba-
lanced LP filter. One of the most used representations is
the LSF [17]. In this study, we adopted this representation,
in the hiding process p magnitude locations are replaced
by p LSF coefficients of the secret speech.

Secret speech analysis
To perform the secret speech analysis, we will use the LP
speech production model. In this model, the speech signal
is subject to an LP analysis followed by pitch analysis.

LP analysis
The LP analysis is performed every L-ms (for M=L × Fs
samples), for a sampling frequency of Fs kHz, to extract
p LP coefficients. These coefficients represent the vocal-
track poles (or formants). To smooth the inter-frame
variation of the spectral parameters, the analysis window
contains more samples than the analysis frame. In
addition to the current speech frame, the analysis win-
dow contains 5 ms from past speech and 5 ms from fu-
ture speech. In the LP analysis, we adopt a tapered
rectangular window with three parts [18]. The first part
is the first half of a hamming window, the second part is
a rectangular window, and the third part is the second
half of a Hamming window. This window produces a
narrower main lobe than the asymmetric window used
in G.729 and G722.2 codec standards.

w nð Þ ¼

54� :46 cos
2πn

M � 1

� 	
; n ¼ 0; . . . ;

M
2
� 1

1; n ¼ M
2
; . . . ;

3M
2

� 1

:54� :46 cos
2π n�M

2

� 	

M � 1

0
BB@

1
CCA; n ¼ 3M

2
; . . . ; 2M

8>>>>>>>>>><
>>>>>>>>>>:

ð11Þ

The existence of a short-term correlation in speech sig-
nals motivates us to adopt the LP analysis. This correlation

Figure 2 LP model of speech production.
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is helpful to predict a speech sample s2(n) at time n from
its previous p samples s2(n− i). For each speech frame, a
10-order predictor (p=10) is employed on the windowed
speech, s2(n), to estimate the spectral envelope. The pre-
dicted signal ŝ(n) is given by

ŝ nð Þ ¼
Xp
i¼1

ais n� ið Þ ð12Þ

The LP coefficients ai(i= 1, . . ., p) are predicted from
the minimization (by autocorrelation method) of the
error between the windowed sample s2(n) and the pre-
dicted sample ŝ2(n). Since the pitch and excitation ana-
lysis phases are completed in a closed-loop manner, the
LP synthesis filter is required in order to reduce the
error between the original speech and the synthesized
speech candidates. The LP synthesis filter in the Z-domain,
H(z), is connected to the LPC vector by

H zð Þ ¼ 1
Xp
i¼1

aiz
�1

ð13Þ

The filter H(z) is represented in the time domain by
the impulse response function h(n).

Pitch analysis
Due to the vocal cords vibration, the voice speech seg-
ments show some long-term correlation. The vibration
frequency, named pitch, is reflected in the quasi-
periodicity behavior of the time domain speech wave-
form. An autocorrelation scheme is used to calculate the
pitch lag (the inverse of the pitch frequency). Since the
LP analysis frame may contain more than one pitch
period, the pitch analysis is performed on sub-frame
basis to extract one pitch gain and one pitch delay. One
pitch gain and one pitch lag are used to represent conse-
quently the periodicity in each speech frame [19]. In the
pitch analysis algorithm, an open-loop analysis is first
applied to each speech frame to estimate the pitch
period. Open-loop pitch estimation is based on the
weighted speech signal sw(n) which is obtained by

filtering the input speech signal through the perceptual
weighting filter, sw is given by:

W zð Þ ¼ A Z=y1ð Þ
A Z=y2ð Þ ¼

1þ
X10
i¼1

yi1aiz
�1

1þ
X10
i¼1

yi2aiz
�1

ð14Þ

That is, in a frame of size L, the weighted speech is
given by:

Sw nð Þ ¼ s nð Þ þ
X10
i¼1

aiy
i
1s n� ið Þ

�
X10
i¼1

aiy
i
2sw n� ið Þ; n ¼ 0; . . . ; L� 1

ð15Þ

Residual excitation
The signal e(n) after removing the long-term and short
term redundancies has a noise-like shape with a flat
spectrum. Figure 3 shows the residual signal after re-
moving the long and short correlations. This signal
could be modulated by a random signal. Since the ran-
dom signal has no correlation, this residual will be gen-
erated at the receiver side using a random signal
generator. By this, we reduce the amount of information
to be hidden in the cover signal. As mentioned below,
the speech analysis algorithm is based on two phases: an
LP analysis to obtain p LP coefficients, ai(i= 1, . . ., p) and
a pitch analysis phase to extract the pitch gain g and the
pitch delay d. Table 1 shows the used parameters of the
LP-model for narrowband speech.

LP-model parameters adjustment
The spectral amplitudes must always be positive due to
the absolute value applied to the speech spectrum. Dir-
ect embedding of the LP coefficients C in the magnitude
spectrum will drastically destroy the cover signal since
the LP parameters could have negative values. To ac-
commodate this problem, we propose to convert the LP
coefficients C to one of their frequency representations,
such as LSF. As shown in the following equation, the
LSF parameters wi are ordered and are all positive.

Figure 3 Residual signal after removing the long and short correlations.
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0 ≤ w 1 ≤ w2 ≤ ⋯ ≤ wp ≤ π ð16Þ

Since the pitch delay varies from 20 to 147 samples, direct
embedding of the pitch delay in the cover speech spectrum
will affect the high-frequencies small-amplitudes cover
spectrum components. Hence, the need to normalize the
pitch delay is by 147, the maximum pitch delay, before the
hiding process. The normalized pitch delay will have a value
ranging from 0 to 1. For this reason, the best location to hide
these parameters is the last cover speech spectrum location
since the amplitude of this last component is very small.

LSF cues
Itakura [20] has proposed the LSF to represent the LPC.
They have been demonstrated to acquire different advanta-
geous proprieties like bounded range, sequential ordering,
and ability of constancy verification [21]. Moreover, the LSFs
coefficients facilitate the integration of human observation
system proprieties in the frequency domain representation.
According to the ITU-T Recommendation G.723.1, the ex-
traction of the LSFs parameters is recommended in case of
need to convert the LPC parameters to LSFs [22]. In LPC,
the mean squared error between the original and the
predicted speech is minimized over a short time interval to
produce distinctive set of LP coefficients. The transfer
function of the LPC filter is given by

H zð Þ ¼ G

1þ
XP
k¼1

akz
�k

ð17Þ

where P the prediction order, G is the gain, and ak is the
LPC filter coefficients. The poles of this transfer function
contain the poles of the vocal tract as well as those of the
voice source. Solving for roots of the denominator of the
transfer function gives both the formant frequencies and
the poles corresponding to the voice source. Two transfer
functions Qp+1(z) and Pp+1(z), respectively, called difference
and sum polynomials can be resulting from H(z). The dif-
ference polynomial is given by:

and the sum polynomial is given by:

Ppþ1 ¼ Ap zð Þ þ z� pþ1ð ÞAp z�1
� � ð19Þ

where Ap(z) is the denominator of H(z). The polynomials
contain trivial zeros for even values of p at z =− 1 and at
z=1. These roots can be removed in order to obtain the
following quantities:

Q̂ zð Þ ¼ Qpþ1 zð Þ
1þ zð Þ ¼ β0z

p þ β1z
p�1 þ⋯þ βp; ð20Þ

and

P̂ zð Þ ¼ Ppþ1 zð Þ
1þ zð Þ ¼ α0z

p þ α1z
p�1 þ⋯þ αp: ð21Þ

The LSFs are the roots of Q̂ zð Þ and P̂ zð Þ and alternate
with each other on the unit circle. Note that Qp+1(z) is
an antisymmetric polynomial and Pp+1(z) is a symmetric

polynomial. The polynomials Q̂ zð Þ and P̂ zð Þ derived
from Qp+1(z) and Pp+1(z) are symmetrical. Therefore, for
even values of p we can derive the following property:

αi ¼ α p� ið Þ; 0 ≤ i ≤
p
2

ð22Þ

Consequently (20) and (21) can be written as follows:

Q̂ zð Þ ¼ zp=2


β0 zp=2 þ z�p=2
� �

þβ1 zp=2�1 þ z� p=2�1ð Þ
� �

þ⋯þ βp=2


;

ð23Þ
and

P̂ zð Þ ¼ zp=2


α0 zp=2 þ z�p=2
� �

þα1 zp=2�1 þ z� p=2�1ð Þ
� �

þ⋯þ αp=2



ð24Þ
By putting z= ejw and then z+ z−1 = 2 cos (w), we ob-

tain the equations to be solved in order to find the LSFs
according to the real root scheme ITU-T Recommenda-
tion G.723.1:

Q̂ e jw
� � ¼ 2e jpw=2



β0 cos

p
2
w

� �
þ β1 cos

p� 2
2

w

� 	

þ⋯þ 1
2
βp=2



ð25Þ

Table 1 The LP model parameters

Model parameters Symbol Number of parameters per frame

Pitch lag d 1

Pitch gain g 1

LP coefficients a1, a2, . . ., ap p

Voice/unvoiced
decision

V/UV 1

Total p+ 3

Qpþ1 ¼ Ap zð Þ � z� pþ1ð ÞÞAp z �1ð Þ
� �

ð18Þ
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and

P̂ ejw
� � ¼ 2e jpw=2



α0 cos

p
2
w

� �

þα1 cos
p� 2
2

w

� 	
þ⋯þ 1

2
αp=2



ð26Þ
Input speech is segmented to different frames. Additionally,

each frame is subdivided into four sub-frames. On these
sub-frames, the LPC analysis is performed. The conversion
of the p LPC coefficients into their p corresponding LSFs
is performed in the last sub-frame. For the three of the
sub-frames, the LSFs are obtained by executing linear
interpolation between the LSFs of the current and the pre-
vious frame.
To achieve this purpose, the unit circle is then divided

into 512 equal intervals, each of length π/256. The roots
(LSFs) of Q(z) and P(z) polynomials are searched along
the unit circle from 0 to π. A linear interpolation is per-
formed on intervals where a sign change is observed in
order to find the zeros of the polynomials. According to
[20], if a sign change appears between intervals l and
l− 1, a first-order interpolation is executed as follows:

l̂ ¼ l � 1þ P zð Þl�1

�� ��
P zð Þl�1

�� ��þ P zð Þl
ð27Þ

where l̂ is the interpolated solution index, |P(z)l| is the
absolute magnitude of the result of sum polynomial
evaluation at interval l (similarly for l− 1). Since the
LSFs are interlacing in the region from 0 to π, only one
zero is evaluated on P(z) at each step. The search for the
next solution is performed by evaluating the different
polynomial Q(z), starting from the current solution
[23,24]. Therefore, two main reasons motivated our
choice to consider the LSFs representation. The first rea-
son is related to the fact that LP coefficients are very
sensitive to errors. The direct quantization of these coef-
ficients might produce an unstable LP filter. The second
reason is related to the fact that LSFs are widely used in
conventional coding schemes. This avoids the incorpor-
ation of new parameters that may require significant and
costly modifications to current devices and codecs.

Speech hiding algorithm
We propose a new method for speech signal steganogra-
phy, the secret speech signal is embedded into the coeffi-
cients in the wavelet domain. The DWT decomposes the
cover speech signal into low- and high-frequency compo-
nents. For speech signals, the low-frequency component is
the most significant part for speech perception. On the
other hand, the high-frequency component impacts flavor
or nuance (noise) to the signals. Let’s consider the human

voice. If we remove the high-frequency components, the
voice sounds different, but we can still tell what’s being
said. However, if we remove sufficient amount of the low-
frequency components, we hear gibberish and we cannot
understand what’s being said. For this reason, we decide to
hide information in the high-frequency in the wavelet do-
main. Furthermore, in wavelet analysis, we can divide the
speech signal in approximations and details. The approxi-
mations are the high-scale, low-frequency components of
the signal. The details are the low-scale, high-frequency
components. As shown in Figure 4 after passing through
two complementary filters, two signals emerge from the
original signal.
A variety of wavelets can be used depending on the

expected results. Each family of wavelets (such as Haar or
Daubechies family) are wavelet subclasses distinguished by
the number of filter coefficients and the level of iteration.
In steganography, whatever the used algorithm for hiding
data, we need to reconstruct the speech signals after em-
bedding the message in the original signal. After that, per-
formance measure can be used to compare the original
speech signal and the stego-speech. In our method, after
using the DWT to decompose the speech signals for hiding
a message speech signals, we use the IDWT to reconstruct
the signal. The speech-in-speech hiding algorithm is illu-
strated in Figure 5. Both of secret and cover speech must
be pre-processed in order to facilitate the hiding process.
The cover speech is partitioned into L-ms frames. The
DFT of each time-frame s1(m) defined for 0≤m≤m− 1 is
computed using the DWT-FFT method. The obtained
speech spectrum is decomposed into magnitude and phase
spectra. Each L-ms of the secret message s2(m) is embed-
ded in the low-amplitude high-frequency region of the
magnitude spectrum of the cover signal.

Secret speech hiding
In order to hide the secret speech, the DWT is applied
to the speech cover speech frame to separate the high-

Figure 4 Level 1 decomposition of DWT coefficients.
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and the low-frequency regions. Then the FFT is applied
to the high-frequency wavelets part producing a
spectrum S1(k)(k = 0, . . .,M − 1). The spectrum is
decomposed into magnitude spectrum |S1(k)| and phase
spectrum φ1(k).
The magnitude spectrum is symmetric. The hiding

process consists of representing the L last elements of
the first half of |S1(k)| by the LP parameters V2 of the se-
cret speechs2(m).
The resulting magnitude spectrum, denoted by |S3(k)|,

is defined by the following expressions:

S3 kð Þj j ¼

S1 kð Þj j; k ¼ 0; . . . ;
M
2
� p� 3

V2 k �M
2
� p� 2

� 	
; k ¼ M

2
� p� 2; . . . ;

M
2
� 1

V2
M
2
þ pþ 1� k

� 	
; k ¼ M

2
; . . . ;

M
2
þ pþ 1

S1 kð Þj j; k ¼ M
2
þ pþ 2;⋯;M � 1

8>>>>>>>>><
>>>>>>>>>:

ð28Þ
The third right-hand term in the above equation is

included to preserve the DFT symmetry. These modifi-
cations lead to a new speech signal s3. Its spectrum is a
simple combination of the magnitude spectrum |S3(k)|
and the cover phase spectrum φ1(k),

S3 kð Þ ¼ S3 kð Þj je jφ1 kð Þk ¼ 0; . . . ;M � 1 ð29Þ
The time-frame composite (stego) signal s3(m),m=0, . . .,

M− 1, is obtained by the IDWT,

The stego signal s3(m) is a composite signal since it
contains the L-ms cover speech s1(m) and the L-ms se-
cret signal s2(m).

Energy normalization
In order to improve the speech quality, we preserved the
speech energy by normalizing all the hidden parameters
by the total energy of the original spectrum magnitudes.
However, the energy preservation requires the hiding of
the energy as side information. At the receiver, this en-
ergy will be used to rescale the hidden information to its
original values. The scaling coefficient a is given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ec
1þ ELSF secret

r
ð31Þ

where Ec is the energy of the cover speech spectrum and
ELSF is the energy of the LSF vector.

Secret speech reconstruction
The secret speech is reconstructed from the stego speech
by subsequent the hiding algorithm in overturn order.
Figure 6 illustrates the pursued steps to extract the hidden
information and reconstruct the secret speech message.
The first step consists of performing the DWT. Transform-
ing by FFT the high frequencies obtained with the DWT to
its corresponding spectrum. The magnitude spectrum is
then acquired from the speech spectrum. The secret speech

Figure 5 Block diagram showing the general steps to embed a secret speech signal s2 inside another cover speech signal s1 to
produce a stego-speech signal s3.

s3 ¼ IDWT S3ð Þ ð30Þ
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parameters are extracted from the same locations they were
embedded in the spectral magnitude of the stego speech
signal. The LSF vector is converted back to a P-order LPC
vector (a1, . . .,ap) to build the LP synthesis filter H(z).

A random excitation signal e(n) is applied to the series
of the pitch and LP synthesis filters. The signal ŝ(n), at
the output of the LP synthesis filter, is a reproduction of
the original secret message s(n). Since the LPC-model
parameter values that are extracted from the stego
speech have approximately the same exact values as the
embedded parameters, the reconstructed secret speech
signal is not affected by the hiding process. The minor
degradations noticed in this signal, when compared with
the original secret signal, are resulting from the LPC
model and the LSF conversion.

Evaluation
Experimental setup
To evaluate the performance of the proposed hiding tech-
nique, we conducted several simulations using NOIZEUS
database [25,26,27]. This corpus contains 30 sentences
from the IEEE sentence database, recorded in a sound-
proof booth using Tucker Davis Technologies recording
equipment. The sentences are produced by three male and
female speakers. The 30 sentences: 15 male and 15 female
speakers include all phonemes in the American English
language. The sentences were originally sampled at 25 kHz
and down-sampled to 8 kHz. The length of the speech file
varies between 0.02 and 0.03 ms. In the comparative evalu-
ation, we conducted four sets of tests. In the first set of
simulations, we embedded each of the 15 male speech files
in each of the 15 female speech files. In the second set of
tests, we hide each of the 15 female speech files in each of
the 15 male speech files. In the third set of tests, we em-
bedded each of the 15 male speech signals in the remaining
14 male speech files. In the last sets of tests, we hide each
of the 15 female speech segments in the remaining same
gender speech files. Each set is iterated for five different
wavelet families (Haar, Daubechies, Symlets, Coiflets, and

Figure 6 Block diagram showing the general steps to retrieve the secret speech signal S2 from the stego-speech S3.

Table 2 SNR of the DWT-FFT-based hiding approach

Cover signals Secret signals SegSNR (dB)

Female Male 31.86

Male Female 32.70

Male Male 34.45

Female Female 31.13

Average 32.54

Table 3 SNR of FFT-based hiding approach

Cover signals Secret signals SegSNR (dB)

Female Male 51.46

Male Female 52.62

Male Male 54.37

Female Female 51.09

Average 52.39

H zð Þ ¼ 1

1�
X10
i¼1

a i z�i

ð32Þ
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BiorSplines). In total, we conducted 4,210 computer simu-
lations ((15*15*2+ 14*14*2)*5).
In order to evaluate the impact of the DWT-FFT

technique, we conducted two different comparative experi-
ments using DWT-FFT method and then using FFT only.

Evaluation outcomes
One of the performance measures of any steganographic sys-
tem is the comparison between the cover and the stego sig-
nals. In this study, we used subjective and objective
performance measures. In the subjective measures, we con-
ducted several informal listening comparative tests. In these
simulations, we played in a random order the cover speech
s1(m) and the stego signal s3(m) to several listeners. Each lis-
tener had to identify the better quality speech file among the
cover and the stego signals. The majority of listeners could
not distinguish between the two speech files. As an objective
measure, we used the segmental signal-to-noise ratio
(SegSNR) and the perceptual evaluation of speech quality
(PESQ). PESQ measurement provides an objective and auto-
mated method for speech quality assessment. The SegSNR is
defined by

SegSNR dBð Þ ¼ 10 log10

X159
m¼0

s1 mð Þ½ �2

X159
m¼0

s1 mð Þ � s3 mð Þ½ �2

0
BBBB@

1
CCCCA

ð33Þ

where s1 and s3 are the cover and the stego speech files, re-
spectively. In this study, we segmented the speech files into
frames of 20 ms (L=20) (or 160 samples (M=160)). In
Table 2, we present the average SegSNR values for each of
the four different sets of tests using DWT-FFT algorithm. In
Table 3, we present the average SegSNR of the same set of

tests using the FFT only. The quality of the stego signal pro-
duced by the FFT is better than the one produced by the
DWT-FFT. However, the DWT-FFT increases the robust-
ness of the hiding algorithm against steganalysis techniques.
We used some of the existing wavelets to compare the im-
pact of the different wavelet on the speech quality. The de-
composition of all used wavelets is done with one level.
Table 4 shows the result of different wavelets for the four
different sets of tests. As can be noticed, different wavelets
have almost similar results; therefore, this method is not
depending on a particular type of wavelet. The SegSNR
value did not differ a lot for different wavelets. The SegSNR
is just an indicative performance measure. The PESQ is a
more reliable method to assess the performance of our hid-
ing technique. The PESQ measurement provides an object-
ive and automated technique for speech quality evaluation.
The degradation of the speech sample can be predicted
using the PESQ algorithm with subjective opinion score. In
general, the PESQ returns a score from 0.5 to 4.5, with
higher scores signifying better quality [28,29]. The PESQ
method is used in our experiments to evaluate the stego
speech. The reference signal refers to an original (cover)
signal and the degraded signal refers to the stego signal
with the hidden secret message. In Table 5, we present the
average PESQ values for male and female speakers
obtained by the two hiding techniques (using DWT-FFT
and FFT only). Figure 7 shows variations of PESQ for 20
speech signals of the 2 hiding approach. The hiding
method achieves 3.68 and 4.14 PESQ average for DWT-
FFT and FFT algorithms, respectively. Figure 8 shows the
magnitude spectrum of the cover signal and the corre-
sponding of stego speech after hiding the LPC parameters
of the secret signal. The PESQ analysis shows that the stego
and cover speech provide similar subjective quality. This re-
sult is supported by the resemblance between the cover

Table 4 Different wavelets results of DWT-FFT-based steganography systems

Wavelet name Haar Daubechies (db1) Symlets (sym1) Coiflets (coif1) BiorSplines (bior1.1)

Cover signals Secret signals SegSNR (dB) SegSNR (dB) SegSNR (dB) SegSNR (dB) SegSNR (dB)

Female Male 31.53 31.86 31.48 31.41 31.39

Male Female 31.98 32.70 31.86 31.96 31.91

Male Male 34.12 34.35 34.08 34.08 34.04

Female Female 30.79 31.13 30.68 30.76 30.71

Average 32.11 32.51 32.03 32.05 32.01

Table 5 PESQ of DWT-FFT and FFT-based hiding approach

Speaker PESQ

DWT-FFT FFT

Female 3.58 4.12

Male 3.78 4.16

Average 3.68 4.14

Table 6 Impact of the hiding process on the secret
speech in terms of SegSNR

Speaker SegSNR(dB)

DWT-FFT FFT

Female 21.76 24.64

Male 23.89 26.28

Average 22.83 25.46
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and stego speech spectrograms in Figure 9. The objective
and subjective performance measures show that the pro-
posed hiding technique attracts no suspicion about the ex-
istence of a hidden message in the stego speech, while
being able to recover an intelligible copy of the original se-
cret message at the receiver side. The informal listening test
to the original and the reassembled secret speech message
advocate the result of the other objective performance
measurement. The reconstructed secret speech ŝ(n) (from
both DWT-FFT and FFT hiding approaches) still com-
pletely comprehensible, even some perceptual distortions
are simply noticeable. What concerns us is the speech

intelligibility since the objective is to convey the secret mes-
sage to the intended receiver. Table 6 shows the impact of
the hiding algorithms on the secret speech in terms of the
SegSNR.

Conclusions
In this article, we presented a new steganography system
for secrecy applications. The proposed hiding method pro-
duces stego speech files that are indistinguishable from
their equivalent cover speech files. Moreover, the complex-
ity of our hiding technique is so high any eavesdropper can-
not extract the hidden information even after suspecting

Figure 7 Comparison of the PESQ variations between DWT-FFT and FFT-based steganography systems: PESQ scores of cover speech
s1(m) and the stego signal s3(m) utterances using DWT-FFT and FFT hiding approach.

Figure 8 Magnitude spectrum of (a) the cover speech s1(m), (b) the stego speech.
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the existence of a secret message. Since our aim is to render
the steganalysis (the attempt to extract the secret message
from the stego signal) by the opponent more complex. Our
method exploits first the high frequencies using a DWT,
then exploits the low-pass spectral properties of the speech
magnitude spectrum to hide another speech signal in the
low-amplitude high-frequencies region of the cover speech
signal. Experimental simulations on both female and male
speakers showed that our approach is capable of producing
a stego speech that is indistinguishable from the cover
speech. The receiver is still able to recover an intelligible
copy of the secret speech message. In the future work, we
will endeavor to extend our approach to applications in-
volving Voice-over IP speech secrecy, which involves com-
pressing the stego speech before transmission. This opens
up the issue of preserving the secret speech after decoding
the compressed stego speech.
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