
Research Article
Edge AI-Based Automated Detection and Classification of Road
Anomalies in VANET Using Deep Learning

Rozi Bibi,1 Yousaf Saeed,1 Asim Zeb,2 Taher M. Ghazal,3,4 Taj Rahman,5 Raed A. Said,6

Sagheer Abbas ,7 Munir Ahmad ,7 and Muhammad Adnan Khan 8

1Department of Information Technology, �e University of Haripur, Haripur, Pakistan
2Department of Computer Science, Abbottabad University of Science and Technology, Havelian, Pakistan
3Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM),
43600 Bangi, Selangor, Malaysia
4School of Information Technology, Skyline University College, University City Sharjah, 1797 Sharjah, UAE
5Department of Physical & Numerical Science, Qurtuba University of Science & Information Technology,
Peshawar 25000, Pakistan
6Canadian University Dubai, Dubai, UAE
7School of Computer Science, National College of Business Administration and Economics, Lahore 54000, Pakistan
8Pattern Recognition and Machine Learning Lab, Department of Software, Gachon University, Seongnam 13120,
Republic of Korea

Correspondence shouldbe addressed toMunirAhmad;munir@ncbae.edu.pkandMuhammadAdnanKhan; adnan@gachon.ac.kr

Received 14 June 2021; Accepted 7 September 2021; Published 29 September 2021

Academic Editor: Amparo Alonso-Betanzos

Copyright © 2021 Rozi Bibi et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Road surface defects are crucial problems for safe and smooth traffic flow. Due to climate changes, low quality of construction
material, large flow of traffic, and heavy vehicles, road surface anomalies are increasing rapidly. Detection and repairing of these
defects are necessary for the safety of drivers, passengers, and vehicles from mechanical faults. In this modern era, autonomous
vehicles are an active research area that controls itself with the help of in-vehicle sensors without human commands, especially
after the emergence of deep learning (DNN) techniques. A combination of sensors and DNN techniques can be useful for
unmanned vehicles for the perception of their surroundings for the detection of tracks and obstacles for smooth traveling based on
the deployment of artificial intelligence in vehicles. One of the biggest challenges for autonomous vehicles is to avoid the critical
road defects that may lead to dangerous situations. To solve the accident issues and share emergency information, the Intelligent
Transportation System (ITS) introduced the concept of vehicular network termed as vehicular ad hoc network (VANET) for
achieving security and safety in a traffic flow. A novel mechanism is proposed for the automatic detection of road anomalies by
autonomous vehicles and providing road information to upcoming vehicles based on Edge AI and VANET. Road images captured
via camera and deployment of the trained model for road anomaly detection in a vehicle could help to reduce the accident rate and
risk of hazards on poor road conditions. *e techniques Residual Convolutional Neural Network (ResNet-18) and Visual
Geometry Group (VGG-11) are applied for the automatic detection and classification of the road with anomalies such as a pothole,
bump, crack, and plain roads without anomalies using the dataset from different online sources. *e results show that the applied
models performed well than other techniques used for road anomalies identification.

1. Introduction

In our daily life, road conditions play an important role.
Road pavement irregularities can lead to mechanical failure
of vehicles and may cause accidents. Poor road conditions

also affect the comfort of drivers and passengers and increase
stress levels [1]. According to World Health Organization
(WHO) 2018 report survey, every year 1.35 million people
lose their lives in road accidents. *e rate of road mortality
in low- and middle-income countries having 60% of the
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world’s vehicles is more than 90%. *e leading cause of
death in the world population aged in the range of 5–29
years is road traffic injuries (WHO, 2018) [2]. *e rate of
deaths in road traffic injuries varies in numbers for different
Asian countries from the year 2009 to 2018. *e number of
deaths in fourteen Asian countries such as Afghanistan,
Bangladesh, China, India, Iran, Japan, Kazakhstan, Kyr-
gyzstan, Malaysia, Pakistan, Philippines, Sri Lanka, Turkey,
and Vietnam is compared by using data from World Health
Organization reports published on global road safety in
2009, 2013, 2015, and 2018 [2–5], as shown in Figure 1.

Road accidents due to adverse conditions of the road and
over speed may lead to life-threatening injuries such as head
trauma, damage to the brain, injury to the neck or back,
fractured bones, injuries to the eyes, and other internal
injuries. Damaged roads also increase the fuel consumption
in vehicles. To minimize accidents rate and mechanical
failures in vehicles, road systems need to be regularly
inspected in the field of highway building and road safety to
recognize threats of damage and possible risks [6]. Terrible
road conditions such as rough roads, potholes, cracks,
manholes, speed bumps, ditches, and surface height im-
balance are major sources of vehicle crashes and high death
rates. *e concrete material quality, large rate of traffic flow,
heavy vehicles, and climate changes such as snowfall and
heavy rains are affecting road surfaces, and as a result, road
anomalies are increasing day by day [7]. Road surface
anomalies are becoming an increasingly important issue for
roads around the world, such as potholes and cracks.

To prevent a vehicle from damage that occurs due to over
speed, the early detection of speed bumps is necessary.
Moreover, the detection of anomalous road surfaces and any
other hurdle causing the problem in the smooth traffic flow
is vital in the Intelligent Transportation System (ITS) by
using in-vehicle sensors and their measurements for re-
ducing possible harm to the vehicles and humans [8, 9]. *e
vehicular ad hoc network (VANET) is a special case of a
wireless multihop network introduced by ITS [10]. Each
vehicle in a network receives data that is transmitted by
other vehicles and also shares their data with other devices
within a network. After accumulating all such data, the
nodes would then work to extract useful information from
the data, and then, the information is sent back to other
devices. VANETcommunication is categorized into Vehicle-
to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and In-
frastructure-to-Infrastructure (I2I) communication. Fur-
thermore, in a critical situation, the exchange of useful pieces
of information to other vehicles in a network is vital for
safety purposes. Dedicated Short-Range Communications
(DSRC) are benchmarks for vehicular remote communi-
cation. A DSRC is a free and authorized range conveyed by
the United States Federal Communications Commission
(FCC) to support communication inside the range of 300m
to 1 km [11].

Today, autonomous vehicles (AVs) are an active research
area with advantages for disabled people, old people, and less
energy consumption especially after the emergence of deep
learning techniques [12]. Deep Neural Networks (DNNs)
have become leading technologies in many areas due to their

astonishing features, allowing vehicles to interpret their
driving environment and to take actions accordingly [13].
Artificial Intelligence strategies will provide autonomous
vehicles with promising solutions for the perception of the
environment and with sufficient decision-making for
smooth navigation [14]. Deep learning also supports tra-
ditional, humanly designed computer vision approaches,
particularly in the area of visual data processing. End-to-end
autonomous driving control based on learning has the
advantage that the device design is streamlined because
CNN learns without clear knowledge of the surrounding
environment and motion planning automatically and is
reliable. However, end-to-end CNN-based learning has a
problem where the basis of the importance of output control
is not understood. Research is being carried out on an
approach based on judgment to resolve this issue, such as
turning the steering wheel to the left or right and stepping on
brakes that can be understood by people [15]. A well-trained
deep learning model can be deployed on cloud or edge
devices for inference [16]. *e deployment of a trained deep
learning model in the autonomous ground vehicle for road
anomalies detection will be very useful for obtaining effi-
ciency in the autonomous field. Using a combination of
sensors and DNN techniques, unmanned vehicles can
perceive their surroundings for the detection of tracks and
obstacles for smooth traveling. *e controller takes images
and forecasts details to visual navigation devices to enable
autonomous vehicles for the perception of surroundings.
However, to bring the concept of an autonomous vehicle to
life many major manufacturers, including Tesla, GM, Ford,
BMW, and Waymo/Google are involved in the construction
and testing of various types of autonomous vehicles [17].
*ese modern autonomous vehicles are equipped with many
sensors such as an accelerator, a Global Positioning System
(GPS), fuel sensor, pressure sensor, ultrasonic sensor, radar,
camera, lidar, rain sensor, thermal sensor, and many other
sensors for automatic checking of oil, temperature, pressure
and coolant level, etc. Each sensor performs a specific
function and accomplishes relevant tasks for a steady flow of
traffic. An autonomous vehicle’s working architecture is
composed of four major layers i.e., sensor, perception,
planning, and control layer incorporating an intelligent
system that monitors the environment, makes decisions, and
takes action based on these decisions [13].

However, the biggest challenge for autonomous vehicles
is to avoid the critical road anomalies that lead to dangerous
accidents and financial crises for manufacturers [18]. To
prevent a collision with road anomalies, an autonomous
vehicle needs not only to detect anomalies but also to find an
alternative safe path and guide itself in real time to a secure
and productive direction [19]. For the detection and clas-
sification of road anomalies for the safe and smooth navi-
gation of vehicles, various studies have been conducted by
the research community. *ese studies present input data
from various sensors and using different machine and deep
learning algorithms for the identification of road anomalies
such as potholes, cracks, bumps, manholes, and any other
static objects that are a source of road accidents and me-
chanical failure in vehicles. Various machine learning, image

2 Computational Intelligence and Neuroscience



processing, and deep learning approaches have been used by
researchers for this purpose based on vision sensors and
vibration sensors, 3D laser scanner, and 2D images [20]. *e
related study is discussed in the context of vision-based
methods and vibration-based methods used for the detec-
tion of road anomalies.

Vision-based methods are cost-effective and able to
provide a fast real-time prediction of road anomalies for
solving road anomaly automatic detection challenges in
vehicles. However, these methods are affected by weather
and lighting conditions in the real world. In [21], satellite
images and road maps are used for the detection of road
anomalies. *e UNet is used for binary classification of road
and nonroad regions, and a modified form of DeepLab e.g.
deeplabv3+ is used for multiclassification of three types of
road surfaces such as pavement, concrete, and gravel. *e
authors in [22] prefer the deep learning approaches for black
box images. *e proposed model is based on two CNN
models for road features extraction and crack detection. *e
CNN1 model is used to reduce the region of the crack
detection area, and the CNN2 model classifies the images
into three classes, namely, cracks, intact area, and road
marking with 81.79% F-measures, 90.81% precision, and
74.4% recall. In [23], the detection of potholes from collected
images by authors is done by using Single-Frame Stereo
Vision-Based Method (SV1), Multiframe Fusion-Based
Method (SV2), Mask R-CNN (LM1), and YOLOv2 (LM2).
*e rate of precision and recall for SV1 is 45.8% and 45.8%,
for SV2 is 67.4% and 51.2%, and for LM1 is 89.8% and 92.8%,
while the LM2 model is capable of detecting potholes in real
time. In [24], the real-time detection of five classes of road
damages from images i.e., longitudinal crack, horizontal
crack, alligator damage, pothole-related crack, and line
blurring is accomplished by using a single-shot multibox
detector (SSD) and faster region-based convolutional neural
networks (R-CNN) with Inception V2 and ResNet. *e

results show that the achieved accuracy rate of 0.5306 for
Inception ResNet V2 is better than other approaches. In
[25], the fully convolutional neural network (FCN) with
VGGNet as a backbone is used for the detection of the crack
based on semantic segmentation of images. *e experi-
mental result shows that the proposed method achieves
performances of 91.3%, 94.1%, 92.1%, and 92.8% for the
precision, recall, F1-score, and SA, respectively.

Deva Priya et al. proposed a methodology based on
image processing and morphological techniques for a pri-
vate dataset in [26] for the detection of five kinds of road
speed bumps that vary in width, height, and color with an
accuracy of 84.5%. In [27], the binary transformation and
morphological operations are used for reducing noise and
extraction of features from private images dataset, and the
decision tree method is adopted for the classification of
superficial cracks, crocodile cracks, linear cracks, transverse
cracks, and road without cracks. *e experimental results
prove the efficiency of the proposed methodology through
good results and show that this approach can be utilized for
solving a real-world problem promptly. Furthermore, low-
pass Gaussian filter and median filtering image processing
techniques have been utilized in [28] for the detection of five
different categories of speed bumps based on color in im-
ages. *e proposed method performs successfully for four
categories of speed bumps with an accuracy of 90% and
below average for the fifth category of the speed bump.
Furthermore, Yolov3, SSD, HOG, and Faster-RCNN deep
learning models are used for the detection of potholes with
an accuracy of 82%, 80%, 27%, and 74%, respectively, in [29].
Gopalakrishnan et al. in [30] used a pretrained deep con-
volutional neural network VGGNet-16 and multiple clas-
sifiers i.e., Single-Layer Neural Network (NN), Random
Forest (RF), Extremely Randomized Trees (ERT), Support
VectorMachine (SVM), and Logistic Regression (LR) for the
binary classification of cracks for their dataset. In the
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Figure 1: Comparison of the road accident death rate in Asian countries.
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presented solution, the image vector produced by VGGNet-
16 is further used as input to classifiers. *e experimental
results show that the performance of NN with transfer
learning is higher than other approaches. *e crack detec-
tion accuracy percentage for NN, RF, ERT, SVM, and LR is
90%, 86%, 87%, 87%, and 88%, respectively. Dalia et al., in
[31], worked for potholes and cracks detection based on
morphological algorithms; the Gaussian low-pass filter is
used for noise reduction in images, and Otsu’s algorithm is
used for obtaining cell pixels’ values based on threshold
values, and to get the connected pixels only, morphological
algorithms-based skeletonization technique is used.

In [32], Li et al. used FC-DenseNets for crack detection
with a recall of 96.63% on publicly available CFD and
AigleRN datasets. In [33], CNN and SVM classifiers are used
for detection and binary classification of potholes’ images
collected from multiple sources and attained accuracy of
99.80% for CNN and 88.20% for SVM. Vosco Pereira et al.,
in [34], applied TensorflowAPI and achieved a precision rate
of 97.46% for the real-time detection of road bumps from
their dataset that is also available publicly. In [35], Yolov2 is
used by Bhanu Prakash et al. for potholes detection using a
publicly available potholes’ dataset. *e experimental results
show that the applied method worked successfully with a
precision of 95.55%. Moreover, deep learning classifiers’
CNN-based ResNet models are used for pothole classifica-
tion based on thermal images in [36] with an accuracy of
97.08%. In [37], potholes are detected via CNN obtaining an
accuracy of 95%. In [38], for detection of cracks, the authors
used a machine learning approach i.e., CrackForest (One-
Class SVM) on the CFD dataset and attained 96.73% pre-
cision. In [39], CNN has applied on their own images dataset
for crack detection. *e proposed CNN model worked
successfully by attaining 92.51% recall. In [40], CNN is
proposed for the detection of speed bumps and the authors
used an additional image processing technique for the case
in which CNN fails to detect speed bumps. Suong et al. used
Yolov2 for potholes detection by collecting potholes images
from Google in [41] and achieved 82.43% precision and
83.72% recall. In [42], MobileNetV2, EfficientNetB0, Den-
seNet201, and InceptionV3 deep learning models are used
for the detection of concrete cracks from image datasets
from multiple sources. *e proposed models attained suc-
cessful experimental results with accuracy of 97.82%,
99.11%, 99.32%, and 98.89%, respectively. In [43], an im-
proved version of the VGG16 network for the detection of
crack is presented, and the authors prepared their dataset,
named CCD1500, for training the model, whereas the CFD,
DeepCrack, and CrackTree200 datasets are used as test data.
*e experimental results indicate that the proposed model
gained successful detection results with a recall of 90.30% for
CFD, 96.60% for DeepCrack, and 89.10% for the Crack-
Tree200 dataset.

In [44], the fully convolutional network based on pre-
trained deep learning models VGG16, Inception v3, and
ResNet is applied on concrete crack images with accuracy
performance of 99.99% for VGG16, 99.90% for Inception v3,
and 97.50% for the ResNet model. Fan et al., in [45], clas-
sified the crack using CNN model. Moreover, the threshold

techniques are used for the segmentation of images with
achieving 99.92% precision results for classification and
98.70% for segmentation of cracks. For real-time detection
of crack defects, Akarsu et al., in [46], used a morphological
image processing approach for features extraction and de-
cision tree for crack classification. From implementation
details, it can be depicted that the method works successfully
for the real-time detection of defects. In [47], canny edge
detector technique is applied to real-world images for the
detection of potholes. *e precision and recall for pothole
detection using the canny edge detector reach up to 81.80%
and 74.4%, respectively. In [48], the pothole detection from
images is based on three steps. Firstly, the dark regions of
potholes are detected and extracted by applying a histogram
and the closing operation of a morphology filter. Secondly,
the candidate features of potholes such as compactness and
size are extracted. Finally, the pothole is detected based on
candidate features. *e proposed approach attained 73.50%
accuracy, 80% precision, and 73.30% recall. Young-Ro et al.,
in [20], proposed an IoT-based alert system for pothole
detection using images. *e collected images are converted
into the binary form; then, a matching value is searched in
the database for detection of potholes. In [49], image seg-
mentation methodologies for potholes detection such as
thresholding, edge detection, K-means clustering, and fuzzy
C-means clustering are proposed and applied on images
collected from Google by authors. *e average accuracy
segmentation performance for thresholding technique is
80.60%, for edge detection is 90.19%, for K-means clustering
is 82.47%, and for fuzzy C-means clustering is 82.46%.
However, the computation time for K-means clustering is
less than other approaches and can be preferable for fast
computation. In [50], the CNN model is used for the de-
tection of crack with an accuracy achievement of 70.7%. In
[51], the Inception V2 deep learning model is used for
pothole images from the video. In [52], the authors have
chosen the modified version of AlexNet, i.e., SqueezeNet,
which is faster in speed and smaller in size than AlexNet.*e
SqueezeNet is applied on GAPs and ICIP datasets for de-
tection of cracks and potholes attaining accuracy of 99.89%
for the GAPs’ dataset and 92.37% for the ICIP dataset. In
[53], potholes are detected in asphalt pavement images using
supervised learning. *e features are extracted using HOG
and Naive Bayes classifier to localize the pothole over the
region. *e obtained results are 90.0%, 86.50%, and 94.10%
for accuracy, precision, and recall.

Vibration-based methods are suitable for real-time de-
tection of road anomalies with consumption of less storage.
*ese methods are highly susceptible to error due to sen-
sitivity to frequency noise and signals from other sensors
working in the vehicle. Moreover, the vibration effect
produced by any other obstacle on road similar to road
anomalies can be detected as road anomalies. Several efforts
have been made by researchers for the detection of road
anomalies based on the vibration method. In [54], the au-
thors used a gyroscope and accelerometer for speed bump
detection and upload resultant values on a cloud server for
smooth navigation. *e gyroscope is used for measuring
gravity changes and the accelerometer for linear velocity.
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Data is collected through mobile phone sensors, and a
Butterworth filter is used for reducing noise. Z-axis readings
of the accelerometer and X-axis readings of the gyroscope
are used for the extraction of features based on standard
deviation, mean, and min-max value, and speed bumps and
smooth roads are classified by applying Support Vector
Machine (SVM) using RBF, MLP, and polynomial kernels
that achieved an accuracy rate of 75.76%, 66.67%, and
87.88%, respectively. In [55], the detection method for speed
bumps on road by You Member et al. involves sensing the
environment using themobile phone gravity sensor andGPS
sensor. *e collected data for speed bumps detection is
passed to a cloud unit composed of API, database, and data-
mining layers for generating accurate data, storage and
applying the K-mean clustering technique, respectively,
whereas Bluetooth is used for communication between the
microcontroller and vehicle for controlling speed. In [56],
the authors address the problems associated with roads
without infrastructure by utilizing accelerometer and GPS
sensors of mobile phones for sensing the road obstacles and
classify the road obstacles into two categories. *e first
category contains actionable obstacles such as potholes,
utility patches, drains, catch basins, sunk casting, animals,
moving humans, construction material, and speed bumps
that are caused by natural factors, whereas the other category
contains nonactionable obstacles including train tracks and
flat casting that have the least dangerous effects. Road
features i.e., latitudinal and longitudinal parameters, speed,
and accelerometer coordinates are recorded through mobile
sensors, and the beta-signature filter is applied for
classification.

Song et al., in [57], proposed an effective strategy for
pothole detection by utilizing a gyroscope and accelerom-
eter. *e convolutional neural network (CNN) model In-
spection V3 is used for the classification of the three
categories of road anomalies i.e., normal, pothole, and
bumps, and the accuracy of classification is approaching
100%. Furthermore, roads classified into paved and unpaved
roads, and the work is proposed in [58] using an android
application for obtaining data from mobile phone acceler-
ometer, gyroscope, GPS, and compass. Support Vector
Machine (SVM), Hidden Markup Model (HMM), and
ResNet models are used for the classification of paved and
unpaved roads, whereas for the detection of the road
anomaly and smooth road, the KNN strategy is utilized
based on Dynamic Time Warping (DTW) based on Eu-
clidean distance approach for paved roads. *e accuracy
obtained for the classification of paved and unpaved roads
using SVM, HMM, and ResNet is 96%, 85%, and 97%,
respectively. In [59], the road monitoring system based on
the Internet of *ings (IoT-RMS) for potholes is proposed
by the authors. An accelerometer, ultrasonic sensor, and
global positioning system (GPS) sensors are used for data
collection. Cloud server and Honey Bee Optimization
(HBO) algorithm are adopted for pothole detection.

*e authors in [60] applied principal component anal-
ysis (PCA) technique-based detection of the anomalies
belonging to four classes i.e., long bumps, short bumps,
manhole, no anomaly, and others are proposed by authors

using speed, GPS coordinates, and accelerometer data. *e
web-based application is designed for anomaly detection.
*e accuracy for anomaly detection in a laboratory envi-
ronment is 94.69%, and in a real-world scenario, the ac-
curacy is 82.51%. Varona et al., in [61], proposed a model
based on deep learning for automatic detection of vehicle
stability on defective roads. *e data about various road
surfaces such as concrete panels, cobblestones, asphalt, and
dirt roads are collected through smartphones’ accelerometer
and GPS sensors. Convolutional neural network (CNN),
long short-term memory neural network (LSTM), and
reservoir computing (RC) are stable classifiers for road
annomilies detection.*e experimental results show that the
CNN model has better performance than other approaches
and achieved an accuracy rate of 85% for road surface
classification and 93% for stability events. In [62], the
proposed model includes data collection frommobile phone
sensors i.e., accelerometer and GPS. To remove the noisy
data, the Butterworth filter is used and the Gaussian
background model is utilized with improvements according
to the need for abnormal road recognition, whereas the
abnormal road surfaces are classified using the KNN algo-
rithm for the detection of potholes and speed bumps on
roads with an accuracy rate of 94.12% and 96.03%, re-
spectively. In [63], the authors highlighted the problems in
various techniques that have been used for anomaly de-
tection. *e proposed methodology involves the collection
of data through the accelerometer of the smartphone; then,
anomalies are located by using threshold detection and
sliding window technique. Moreover, for the classification of
a pothole, metal bumps, and speed bumps, the Dynamic
Time Warping technique based on KNN is used.

Several machine learning and deep learning techniques
have been applied for different types of road anomalies
detection. However, in terms of performance, improvement
is needed. One of the major causes for high road accidents
rate and deaths are road surface damages due to natural
disasters which is common throughout the world specifically
in Asian and underdeveloped countries.With the emergence
of AI-powered devices and the benefits of an intelligent
transportation system, these road hazards can be minimized.
In the proposed system, with the help of powerful com-
putational capabilities in smart devices based on artificial
intelligence and the benefits of vehicular ad hoc networks,
road surface conditions can be communicated within a
network of vehicles. *e proposed research work is helpful
for the society by considering an intelligent mechanism in a
vehicle for early detection of road conditions and resolving
problems of road accidents, deaths, and vehicles damage.

*e present study is based on vision-based methods for
automatic detection and classification of road anomalies
images into four classes i.e., potholes, road bumps, cracks,
and plain road (no anomaly) using ResNet-18 and VGG-11
deep learning models. To solve the problems related to road
anomalies on the rough road surface for smooth traffic flow
and reducing hazards, an Edge AI-based framework for
automatic identification of pothole, crack, speed bump, and
plain road (no anomaly) is proposed for an autonomous
vehicle in this study, as shown in Figure 2. In the proposed
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framework, the VANET environment is used for main-
taining the safety of vehicles through message broadcasts
related to road conditions to incoming vehicles. *e road
anomalies concerning its type(s) are recognized by using any
trained deep learning model deployed in a vehicle embedded
powerful processor and further can be used for path
planning and avoidance mechanism in autonomous
vehicles.

*e rest of the paper is organized as follows. In Section 2,
proposed methodology with a description of the dataset and
proposed deep learning models are explained. Results are
described and compared in Section 3, and the conducted
study is concluded in Section 4 with possible future research
directions.

2. Materials and Methods

In this section, we present the proposed methodology that
involves a description of the dataset used for the study,
preprocessing of the data for removing noisy and repeated
data, and data augmentation technique for increasing the
quantity of the dataset, as shown in Figure 3. Furthermore,
the deep learning models used for the classification of road
anomalies are described at the end of Section 2.

2.1. Data Analysis. *e dataset is collected from different
online sources. Pothole dataset is collected from [64]
which consists of images of the dry, water-filled, and
dusty potholes of various shapes captured in clear and
low light weather conditions. For bump detection, the
publicly available dataset from [65] is utilized that has
marked as well as unmarked road bumps images, whereas
the CFD and Aigle crack datasets which consist of low

severity cracks having width 0.1 mm–0.3 mm are used for
crack detection [38]. In the case of no anomaly, the plain
road dataset is collected from [66]. *e collected data is
preprocessed before passing to training models.

2.2. Preprocessing. *e preprocessing stage involves
cleaning duplicated data, removing unnecessary parts
from images, and augmentation techniques. *e deep
learning model needs a large dataset for training and
enhancing performance. To improve the performance of
deep learning models with a small dataset, data aug-
mentation plays a vital role [67]. To reduce overfitting in
deep learning models, different data augmentation
techniques such as zooming, cropping, horizontal shift,
and rotation are applied to our dataset to increase the
dataset for deep learning models. *e number of images
in the original dataset and dataset after augmentation
related to different road anomalies is shown in Table 1.

2.3. Deep Learning Models. After preprocessing, the
dataset is passed to CNN models for training procedure.
In this research, CNNs are used instead of using con-
ventional machine learning techniques that are provided
with hand-crafted characteristics to learn and take time
and effort. CNN’s have the power to learn from raw data
automatically. Different CNN models such as AlexNEt
[68], ResNet [69], DenseNet [70], and VggNet [71] have
been utilized by the authors for the automatic detection
and classification of images in different fields. *e
transfer learning approach for deep learning models saves
time and computation resources [72]. In the presented
work, two powerful state-of-the-art architectures of CNN
based on transfer learning are used for the classification

I2I I2I

Crack

Bump

V2V

V2I/I2V

Pothole

V2V

Pothole

Bump

Crack

No-Anomaly

Figure 2: Proposed mechanism for road anomaly detection in VANET.
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and identification task of road anomalies detection. On
the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) dataset, these models are successfully trained.
Furthermore, another common object localization
method is gradient-weighted class activation mapping
(Grad-CAM) [15], which uses gradient values determined
during the backpropagation process to produce an at-
tention map for locating a particular object in the image.

2.3.1. ResNet-18. One of the most common convolution
neural networks (CNN) is a deep residual network (ResNet)
which was proposed by He et al. in 2015 that performs best in
the classification of the image for the ImageNet database [73].
ResNet-18 is a pretrained deep learning model with 18 layers. It
is consists of 16 convolution layers, 2 down-sampling layers, and
some fully connected layers (FC). *e input image size of
ResNet is 224× 224, and in addition to the first convolution
layer, the convolution kernel size is 7× 7, and in the other layers,
it is 3× 3. After average pooling the feature map of the last
convolution layer, an eigenvector is obtained by full connection;
then, the classification probability is obtained by normalization
with Softmax.*e general architecture of ResNet-18 is shown in
Figure 4 for road anomalies automatic detection and classifi-
cation into four classes.

2.3.2. VGG-11. VGGNet is a very deep convolutional
network and was introduced by Simonyan and Zisserman
in 2014 [74]. It is the most widely used pretraining

convolution architecture for the ImageNet dataset. *e
biggest success of this network is that the depth of the
network is high, which is important to ensure good
performance. *e VGGNet version VGG-11 is comprised
of a total of 11 layers. It consists of 8 convolutional layers,
two fully connected layers, and an output layer with
Softmax. Each layer is convolved with 3 × 3 convolution
with a feature map of sizes 64, 128, 256, and 512, re-
spectively. *e general architecture of VGG-11 for road
anomalies automatic detection and classification into
four classes is shown in Figure 5.

3. Results and Discussion

*is section describes the experimental input parameters
for training pretrained deep learning models and com-
parison of proposed models with the previous approaches
used for different types of road anomalies. *e experi-
mental results are carried out on Google Colab [75] and
implemented in Python language using the fastai library
[76]. *e input parameters for training deep learning
models are listed in Table 2.

*e confusion matrix is used for performance analysis.
True positive (TP) represents the true positive rate and
points out the positive class determined as positive. False
positive (FP) is a false positive rate that represents the
negative class determined as positive, whereas the false
negative (FN) refers to a positive class determined as
negative, and true negative (TN) is the true negative rate
that points out the negative class determined as negative
[77]. *e performance of proposed deep learning models
is evaluated based on precision, recall, accuracy, and F1-
score.

Precision is also termed as a positive predicted value, and
it can be calculated by using the following equation:
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Test Image Trained Model

Road Anomaly type: Pothole

Edge Inference

Figure 3: Steps in proposed methodology for automated detection and classification of road anomalies.

Table 1: Distribution of road anomalies’ dataset.

Road anomaly Before augmentation After augmentation
Pothole 263 1237
Bump 118 1008
Crack 118 1170
No anomaly 130 1113
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Precision(Prc) �
TP

TP + FP
. (1)

*e number of positive class predictions made from all
positive examples in the dataset is quantified by the recall.
*e mathematical expression for the recall is represented in
the following equation:

Recall(Rec) �
TP

TP + FN
. (2)

*e proportion of a total number of correct predictions
in a confusion matrix for a particular class is termed ac-
curacy and can be estimated through the following equation:

Accuracy(Acc) �
TP + TN

TP + TN + FN + FP
. (3)
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Figure 5: General architecture of VGG-11 for road anomalies classification.

Table 2: Input parameters for models’ training.

S. no. Parameter Value
1 Image size 224
2 Batch size 64
3 Random seed 42
4 Num of epochs 10
5 Learning rate 0.001
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F1-score provides a single score that balances both the
concerns of recall and precision in one number. *e
mathematical formula for the F1-score is represented in the
following equation:

F1 − Score(Fs) � 2∗
Prc∗Rec
Prc + Rec

. (4)

Moreover, the learning curve is a plot of the performance
of model learning. In machine learning, learning curves are a
commonly used diagnostic method for algorithms that learn
incrementally from a training dataset. After each update
during training and plots of the measured performance can
be generated, the model can be tested on the training dataset
and a holdout validation dataset [78]. *e learning curve for
the deep learning model ResNet-18 is shown in Figure 6.
Figure 6 indicates that the training and validation loss for
ResNet-18 are nearly approaching 0 which means that the
proposed model trained well.

*e confusion matrix for ResNet-18 obtained for the
classification of road anomalies is shown in Figure 7. *e di-
agonal values in the confusion matrix represent the instances of
a particular class that are predicted correctly. It can be depicted
from Figure 7 that the efficiency of the proposed models is high
for making predictions of road anomalies. *e truly predicted
value (TP) for road anomaly type bump is 334, for crack is 327,
for pothole is 373, and for no anomaly case is 322.

*e evaluation parametric results for road anomaly types
are presented in Table 3. It can be exhibited from Table 3 that
the prediction precision of ResNet-18 for bump is 100%,
recall is 99.70%, accuracy is 99.92%, and F1-score is 99.84%.
In the case of crack, the prediction precision, recall, accu-
racy, and F1-score of ResNet-18 is 100%. Furthermore, the
predicted precision, recall, accuracy, and F1-score of ResNet-
18 for the no anomaly case are 99.38%, 100%, 99.85%, and
99.68%, respectively. In the case of the pothole, the pre-
diction precision of ResNet-18 is 100%, recall is 99.73%,
accuracy is 99.92%, and F1-score is 99.86%.

Moreover, the learning curve for the deep learning
model VGG-11 is shown in Figure 8. Figure 8 shows that the

training and validation loss for VGG-11 both are decreasing
gradually, and at the end of training, these are nearly
approaching 0.Whereas Figure 9 represents the confusion
matrix for VGG-11. *e truly predicted value (TP) for road
anomaly type bump is 300, for crack is 342, for pothole is
349, and for no anomaly case is 365.

For VGG-11, the prediction precision for bump, no
anomaly, and pothole is 100%.*e predicted recall of VGG-
11 for bump, crack, and no anomaly cases are 100%.
Moreover, the predicted accuracy and F1-score for bump
and no anomaly cases is also 100%. For crack, the prediction
precision of VGG-11 is 99.41%, accuracy is 99.85%, and F1-

Table 3: Result of evaluation parameters for ResNet-18.

S. no. Road anomaly Prc (%) Rec (%) Acc (%) Fs (%)
1 Bump 100 99.70 99.92 99.84
2 Crack 100 100 100 100
3 No anomaly 99.38 100 99.85 99.68
4 Pothole 100 99.73 99.92 99.86
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Figure 6: Training and validation loss of ResNet-18.
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Figure 7: Confusion matrix for ResNet-18.
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score is 99.70%, whereas, in the case of pothole, the pre-
diction recall, accuracy, and F1-score of VGG-11 are 99.43%,
99.85%, and 99.71% as presented in Table 4.

*e performance of both models is compared based
on average accuracy achieved for the classification of road
anomalies as represented graphically in Figure 10.

*e performance of the proposed models is compared
with the deep learning, machine learning, and image pro-
cessing techniques that are previously implemented

by researchers in Table 5. *e results for potholes detection
are compared with the techniques CNN, SVM, Yolov2,
Naive Bayes, K-means clustering, fuzzy C-means clustering,
and morphological algorithm used in [33, 35, 48, 49] and
[53], respectively, as shown in Figure 11.

In the case of bump, the performance of proposedmodels is
compared with proposed methodologies such as TensorFlow
API and image filtering morphological algorithm in [26, 28, 34]
as presented in Figure 12.
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Figure 8: Training and validation loss of VGG-11.

300 0 0 0

0
342

0 0

0 0
365

0

0 2 0
349

Confusion matrix

Bump

Crack

No-Anomaly

Pothole

Bump Crack No-Anomaly Pothole
Predicted

Actual

Figure 9: Confusion matrix for VGG-11.

Table 4: Result of evaluation parameters for VGG-11.

S. no Road anomaly Prc (%) Rec (%) Acc (%) Fs (%)
1 Bump 100 100 100 100
2 Crack 99.41 100 99.85 99.70
3 No anomaly 100 100 100 100
4 Pothole 100 99.43 99.85 99.71
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Figure 10: Comparison of ResNet-18 and VGG-11 accuracy for road anomalies classification.

Table 5: Comparison of proposed techniques with previous vision-based techniques.

Reference Dataset Anomaly type Technique Prc (%) Rec (%) Acc (%) Fs (%)

[22] Private Crack’s area
Road marking CNN 90.81 74.40 NM 81.79

[23] Private Pothole

SV1
SV2
LM1
LM2

45.8 67.4
89.8
NM

45.8 51.2
92.8
NM

NM NM

[25] Private Crack FCN (VGGNet) 91.30 94.10 NM 92.10
[28] Private Speed bumps Image filtering NM NM 90.00 NM
[26] Private Speed bumps Morphological algorithm NM NM 84.50 NM

[30] Private Crack

Neural network (NN)
Random forest (RF)

Extremely-randomized trees
(ERT)

Support vector machine (SVM)
Logistic regression (LR)

90
86
87
87
88

90
86
87
87
88

90
86
87
87
88

90
85
86
87
87

[32] Public Crack FC-DenseNets 95.91 96.63 NM 96.27

[33] Multiple datasets
(Public + Private) Pothole CNN

SVM
100
86.87

99.60
82.20

99.80
88.20

99.60
81.62

[34] Public Speed bumps TensorFlow API 97.46 98.46 97.44 97.96
[35] Public Pothole Yolov2 95.55 91.42 89.41 93.43
[38] Public Crack CrackForest (one-class SVM) 96.73 92.53 NM 94.58
[39] Private Crack CNN 86.96 92.51 NM 89.65

[42] Public Crack

MobileNetV2
EfficientNetB0
DenseNet201
InceptionV3

98.21
98.78
98.92
98.91

97.40
99.45
99.73
99.04

97.82
99.11
99.32
98.89

97.81
99.12
99.32
98.98

[47] Public Pothole Canny edge detector 81.80 74.40 NM NM
[48] Private Pothole Morphological algorithm 80 73.30 73.50 NM

[49] Public Pothole

*resholding
Edge detection

K-means clustering
Fuzzy C-Means clustering

NM

64.04
67.34
87.18
71.39

80.60
90.19
82.47
82.46

NM

[53] Private Pothole HOG and Naive Bayes 86.50 94.10 90.00 NM

[79] Public
Pothole
Bump
Normal

YOLO based on ResNet-50 NM NM NM NM
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Table 5: Continued.

Reference Dataset Anomaly type Technique Prc (%) Rec (%) Acc (%) Fs (%)

[29] Public Pothole

YOLOv3
SSD
HOG

Faster-RCNN

NM NM

82
80
27
74

NM

[37] Public Pothole CNN 95.2 92 95 93.6
[50] Private Crack CNN 57.7 67.2 70.7 62.1

Proposed Multiple datasets (public)

Pothole
Speed bumps

Crack
No anomaly

ResNet-18
VGG-11 99.85 99.85 99.92 99.85
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Figure 11: Comparison of different techniques for pothole detection.
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Furthermore, the results of the techniques used by authors
in [30, 41] that are Neural Network (NN), RandomForest (RF),
ERT, SVM, LR, MobileNetV2, EfficientNetB0, DenseNet201,
and InceptionV3 are compared with results of ResNet-18 and
VGG-11 for crack detection, as described in Figure 13.

4. Conclusions and Future Work

In this study, an Edge AI-based framework is suggested for
the road anomalies detection for an autonomous vehicle. In
this proposed mechanism, trained deep learning model de-
ployment at the vehicle level is used for the prediction of the
road anomaly class. To solve the accident issues and sharing
emergency information, the Intelligent Transportation Sys-
tem (ITS) introduced the concept of the vehicular network
termed as vehicular ad hoc network (VANET) for achieving
security and safety in a traffic flow. Road images captured via
camera and deployment of the trained model for road
anomaly detection in a vehicle could help reduce the accident
rate and risk of hazards on poor road conditions. For the
automatic detection and classification of the road with
anomalies such as a pothole, bump, crack, and plain road
without anomalies, the pretrained deep learning models
ResNet-18 and VGG-11 are used. *e dataset is collected
from different online sources. An open-source Google Colab
and fastai library are used for obtaining results. *e experi-
ment results demonstrated that the suggested models su-
persede the other techniques used for the detection and
classification of different types of road anomalies.

In the future, the research can be broadened by adding
more types of road anomalies and roads with multiple defects.
Moreover, the automatic control of vehicle action based on
anomaly type and prevention can be incorporated in an au-
tonomous vehicle by using less complex deep learningmodels.

Data Availability

*e datasets that have been used in the research are public
datasets (https://www.kaggle.com/sachinpatel21/pothole-
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and-plain-rode-images, https://data.mendeley.com/datasets/
xt5bjdhy5g/1, and https://github.com/cuilimeng/CrackFore
st-dataset). *e simulation data used to support the findings
of this study are available from the corresponding author
upon request.
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