

CUD Digital Repository

The full text of this article is not available in the CUD Digital Repository due to publisher restrictions.

HOW TO GET A COPY OF THIS ARTICLE:

CUD Students, Faculty, and Staff may obtain a copy of this article through this link.

Title (Conference Paper)	AI-based Energy Model for Adaptive Duty Cycle
The (Conference Paper)	
	Scheduling in Wireless Networks
Author(s)	Charef, Nadia
	Mnaouer, Adel Ben
	Bouachir, Ouns
Conference Proceedings	2021 International Symposium on Networks,
	Computers and Communications, ISNCC 2021.
Citation	Charef, N., Mnaouer, A. B., & Bouachir, O. (2021).
	AI-based energy model for adaptive duty cycle
	scheduling in wireless networks. Paper presented at
	the 2021 International Symposium on Networks,
	Computers and Communications, ISNCC 2021.
	https://doi.org/10.1109/ISNCC52172.2021.9615752
Link to Publisher Website	https://doi.org/10.1109/ISNCC52172.2021.9615752
Link to CUD Digital	CUD Digital Repository
Repository	
Date added to CUD Digital	April 29, 2022
Repository	
Copyright	© 2021 IEEE